- #1
- 45
- 0
Homework Statement
[tex]f: K^{3} \rightarrow K^{4}[/tex] is a linear transformation of vector spaces:
[tex]K^{3} = \left\langle \vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3} \right\rangle[/tex]
and
[tex]K^{4} = \left\langle \vec{e}^{*}_{1}, \vec{e}^{*}_{2}, \vec{e}^{*}_{3}, \vec{e}^{*}_{4} \right \rangle[/tex]
as well as:
[tex] f(\vec{e}_{1}) = \vec{e}^{*}_{1} - \vec{e}^{*}_{2} + \vec{e}^{*}_{3} - \vec{e}^{*}_{4}[/tex],
[tex] f(\vec{e}_{2}) = \vec{e}^{*}_{1} - 2 \vec{e}^{*}_{3}[/tex],
[tex] f(\vec{e}_{1}) = \vec{e}^{*}_{2} - 3 \vec{e}^{*}_{3} + \vec{e}^{*}_{4}[/tex].
Determine a matrix A so that for all [tex] x \in K^{3}[/tex] so that
[tex] f(x) = Ax [/tex]
Determine the kernel and image of f.
Homework Equations
The Attempt at a Solution
well I assumed the following:
[tex]K^{3} = \left\langle \vec{e}_{1} \vec{e}_{2} \vec{e}_{3} \right\rangle \[
=
\left[ {\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array} } \right]
\]
[/tex]
[tex][tex]K^{4} = \left\langle \vec{e}^{*}_{1} \vec{e}^{*}_{2} \vec{e}^{*}_{3} \vec{e}^{*}_{4} \right \rangle \[
=
\left[ {\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array} } \right]
\]
[/tex]
[tex] f(\vec{e}_{1}) \[
=
\left[ {\begin{array}{c}
1 \\
-1 \\
1 \\
-1 \\
\end{array} } \right]
\]
[/tex],
[tex] f(\vec{e}_{2}) \[
=
\left[ {\begin{array}{c}
1 \\
0 \\
-2 \\
0 \\
\end{array} } \right]
\]
[/tex],
[tex] f(\vec{e}_{1}) \[
=
\left[ {\begin{array}{c}
0 \\
1 \\
-3 \\
1 \\
\end{array} } \right]
\]
[/tex].
[tex] f(x) \[
=
\left[ {\begin{array}{ccc}
1 & 1 & 0 \\
-1 & 0 & 1 \\
1 & 2 & -3 \\
-1 & 0 & 1 \\
\end{array} } \right]
\]
\[
= Ax = A
\left[ {\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array} } \right]
\]
= A = \[
\left[ {\begin{array}{ccc}
1 & 1 & 0 \\
-1 & 0 & 1 \\
1 & 2 & -3 \\
-1 & 0 & 1 \\
\end{array} } \right]
\]
[/tex]
so that's A, but I don't think it can be right for a start its not 4D.
I know how to get the kernel and image but I don't really know how else to start this problem
Last edited: