Linear Algebra - LU Factorization

ashah99
Messages
55
Reaction score
2
Homework Statement
Please see attached photo for problem statement.
Relevant Equations
LU Factorization concepts
Hello all, I have a problem related to LU Factorization with my work following it. Would anyone be willing to provide feedback on if my work is a correct approach/answer and help if it needs more work? Thanks in advance.

Problem:
1626274232520.png


Work:
1626274250887.png

1626274265082.png
 
Physics news on Phys.org
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Replies
2
Views
2K
Replies
5
Views
1K
Replies
3
Views
1K
Replies
6
Views
2K
Replies
1
Views
1K
Replies
8
Views
1K
Replies
1
Views
1K
Back
Top