Linear operator and linear vector space?

wasi-uz-zaman
Messages
89
Reaction score
1
hi, please tell me what do we mean when we say in quantum mechanics operators are linear and also vector space is also linear ?
 
Physics news on Phys.org
Its to do with the axioms of QM.

At the starting level we say the states form a vector space - and by definition vector spaces are linear - as hopefully you have learned in a course of linear algebra.

The first axioms of QM is that observables are hermitian linear operators such that the eigenvalues (necessarily real since the operator is hermitian) are the possible outcomes of the observation associated with the observable.

The second axiom is the so called Born rule. If a system is in state u and it is observed with observable O the expected value of the outcome is <u|O|u>.

There is more that can be said at an advanced level - especially the very important Gleason's Theorem - see post 137:
https://www.physicsforums.com/threads/the-born-rule-in-many-worlds.763139/page-7

But basically linear is associated the vector space language QM is expressed in.

Thanks
Bill
 
An operator R defined on a set S of functions or vectors over a field F (with + and ×)[ with multiplication * between elements of F and elements of S] is linear if, for all f, g in S and all a in F, R(f⊕g) = R(f) ⊕ R(g), and R(s*f) = s*R(f).

A linear vector space is a set S of vectors closed under addition ⊕ and closed under multiplication ⊗ between scalars [from a field F (with +, ×)] and vectors is defined, such that vector addition is associative and commutative, there is a null vector and every vector has an additive inverse in S, and scalar multiplication is distributive: (a+b)*v = a*v⊕v*b, a(v⊕w) = a*v⊕a*w, and finally (a×b)*v = a*(b*v)
 
  • Like
Likes atyy
thanks
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top