Linear operator and linear vector space?

wasi-uz-zaman
Messages
89
Reaction score
1
hi, please tell me what do we mean when we say in quantum mechanics operators are linear and also vector space is also linear ?
 
Physics news on Phys.org
Its to do with the axioms of QM.

At the starting level we say the states form a vector space - and by definition vector spaces are linear - as hopefully you have learned in a course of linear algebra.

The first axioms of QM is that observables are hermitian linear operators such that the eigenvalues (necessarily real since the operator is hermitian) are the possible outcomes of the observation associated with the observable.

The second axiom is the so called Born rule. If a system is in state u and it is observed with observable O the expected value of the outcome is <u|O|u>.

There is more that can be said at an advanced level - especially the very important Gleason's Theorem - see post 137:
https://www.physicsforums.com/threads/the-born-rule-in-many-worlds.763139/page-7

But basically linear is associated the vector space language QM is expressed in.

Thanks
Bill
 
An operator R defined on a set S of functions or vectors over a field F (with + and ×)[ with multiplication * between elements of F and elements of S] is linear if, for all f, g in S and all a in F, R(f⊕g) = R(f) ⊕ R(g), and R(s*f) = s*R(f).

A linear vector space is a set S of vectors closed under addition ⊕ and closed under multiplication ⊗ between scalars [from a field F (with +, ×)] and vectors is defined, such that vector addition is associative and commutative, there is a null vector and every vector has an additive inverse in S, and scalar multiplication is distributive: (a+b)*v = a*v⊕v*b, a(v⊕w) = a*v⊕a*w, and finally (a×b)*v = a*(b*v)
 
  • Like
Likes atyy
thanks
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top