Well, I'm not sure whether I understand the question, but if it's about plane em. waves, we just have to use what's always answers all questions about em. waves as long as we have no quantum effects to take into consideration, i.e., the good old Maxwell equations. Here we look for the plane-wave solutions (which never occur in nature but you can build all free-field soloutions of Maxwell's equations from them via Fourier integrals). The equations are (using Heaviside-Lorentz units)
$$\vec{\nabla} \cdot \vec{B}=0, \quad \vec{\nabla} \times \vec{E}+\frac{1}{c} \partial_t \vec{B}=0,$$
$$\vec{\nabla} \cdot \vec{E}=0, \quad \vec{\nabla} \times \vec{B}-\frac{1}{c} \partial_t \vec{E}=0.$$
We start with the ansatz
$$\vec{E}=\vec{E}_0 \exp(-\mathrm{i} \omega t + \mathrm{i} \vec{k} \cdot \vec{x}),$$
$$\vec{B}=\vec{B}_0 \exp(-\mathrm{i} \omega t + \mathrm{i} \vec{k} \cdot \vec{x}),$$
where it is understood that the real parts of these expressions are the physical fields. The constant coefficients ##\vec{E}_0## and ##\vec{B}_0## are in ##\mathbb{C}^3##.
Now we go into the equations. The vanishing divergences of both the electric and the magnetic components means that
$$\vec{k} \cdot \vec{E}_0=\vec{k} \cdot \vec{B}_0,$$
i.e., both electric and magnetic field components are transverse to the direction of wave propagation, given by the real wave vector ##\vec{k}##.
Next we consider the 2nd equation (Faraday's Law), leading to
$$-\mathrm{i} \vec{E}_0 \times \vec{k}-\mathrm{i} \frac{\omega}{c} \vec{B}_0=0 \; \Rightarrow \vec{k} \times \vec{E}_0=\frac{\omega}{c} \vec{B}_0,$$
i.e., ##\vec{E}_0## and ##\vec{B}_0## are orthogonal to each other, and ##\vec{E}_0##, ##\vec{B}_0##, and ##\vec{k}## in these order form a positively oriented orthogonal system of vectors.
Then the 4th equation (Ampere-Maxwell Law) gives
$$-\mathrm{i} \vec{B}_0 \times \vec{k} +\frac{\mathrm{i} \omega}{c} \vec{E}_0=0 \; \Rightarrow \vec{B}_0 \times \vec{k}=\frac{\omega}{c} \vec{E}_0.$$
Now we use the equation we got before to get rid of ##\vec{B}_0##
$$\frac{c}{\omega} (\vec{k} \times \vec{E}_0) \times \vec{k}=\frac{\omega}{c} \vec{E}_0$$
or, using ##\vec{E}_0 \cdot \vec{k}=0##
$$\frac{c}{\omega} [\vec{E}_0 \vec{k}^2-\vec{k} (\vec{E}_0 \cdot \vec{k})]=\frac{c}{\omega} \vec{k}^2 \vec{E}_0=\frac{\omega}{c} \vec{E}_0.$$
Since we want to have ##\vec{E}_0 \neq 0##, we must have
$$\vec{k}^2=\frac{\omega^2}{c^2},$$
which is the dispersion relation for electromagnetic waves.
This also implies that
$$\vec{B}_0 \times \frac{\vec{k}}{|\vec{k}|}=\frac{\omega}{c|\vec{k}|} \vec{E}_0=\vec{E}_0.$$
Since ##\vec{k} \cdot \vec{B}_0=0##, you can easily prove from this that ##|\vec{E}_0|=|\vec{B}_0|##.