Linear System Question: Solving Ax=y and Ax=z in \mathbb{R}^3"

tandoorichicken
Messages
245
Reaction score
0
Suppose A is a 3x3 matrix and y is a vector in \mathbb{R}^3 such that the equation Ax=y does not have a solution. Does there exist a vector z in \mathbb{R}^3 such that the equation Ax=z has a unique solution?
 
Physics news on Phys.org
How are you approaching the problem?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top