Linear transformations and subspaces

Click For Summary
The discussion focuses on finding the matrix representation of a linear transformation T relative to a given basis B for R2. The transformation is defined by T(b1) = 2b1 + b2 and T(b2) = b2, leading to an initial matrix guess of [[2,0],[1,1]]. Participants clarify that the matrix must be verified by checking its effect on the standard basis vectors. Additionally, it is noted that changing the basis will alter the matrix representation of T, emphasizing the importance of expressing the transformation in terms of the new basis. Understanding the relationship between different bases is crucial for accurately determining the matrix of T.
Deneb Cyg
Messages
10
Reaction score
0

Homework Statement


Let B={b1,b2} be a basis for R2 and let T be the linear transformation R2 to R2 such that T(b1)=2b1+b2 and T(b2)=b2. Find the matrix of T relative to the basis B.

The Attempt at a Solution


I know that the matrix I'm looking for needs to be 2x2 and that the standard matrix of a linear transformation is related to how the transformation would affect the identity matrix. However I don't understand how to relate it to the basis.

My best guess is:
T(b1)=2b1+b2
T(b2)=0b1+b2
so the matrix is [[2,0][1,1]]

But I'm not sure if this is right (if it is, I'm not sure why) or how to check it. Am I on the right track?
 
Physics news on Phys.org
You know that the linear map sends (1,0) to (2,1) and (0,1) to (0,1) (read as columns). So all you need to do is check that your matrix does that, and in checking it you should see why you did what you did to get the answer.
 
Okay, that makes sense. The second part of the question is "suppose now that b1=(1,1) and b2=(1,2) (read as columns). Find the matrix of T relative to the standard basis of R2."

Would the answer for this be the same [[2,0][1,1]] as before because its the same transformation or does defining B and relating it to the standard basis instead change the answer?
 
Changing basis changes T. I assume that when b1=(1,1) this is b1 relative to the standard basis e1 and e2 (well, 'standard' doesn't matter - it's just another basis).

There are several ways to do this. You could just try to work out what Te1 and Te2 are from the action of T on b1 and b2 (e.g. note that e2=b2-b1, so you know what Te2 is now, but don't forget to express Te2 in terms of e1 and e2.).
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
3
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
7K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K