Linearisation of continuity equation (cosmology)

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
Homework Statement
Show linearisation of
##\frac{\partial \rho}{\partial t} + 3H \rho + \frac{1}{a} \nabla \cdot (\rho \mathbf{v}) = 0##
is
##\frac{\partial \delta}{\partial t} + \frac{1}{a} \nabla \cdot (\delta \mathbf{v}) = 0##
where
##\delta \equiv \delta \rho / \bar{\rho}##, ##\rho = \bar{\rho} + \epsilon \delta \rho##, ##\mathbf{v} = \epsilon \delta \mathbf{v}##, and ##\epsilon \ll 1##.
Relevant Equations
N/A
After expanding to first order in ##\epsilon## and subtracting off the unperturbed equation, I get\begin{align*}
\frac{\partial \delta \rho}{\partial t} + 3H \delta \rho + \frac{\bar{\rho}}{a} \nabla \cdot \delta \mathbf{v}=0
\end{align*}I'm not sure how to deal with the ##3H \delta \rho## term. Where does ##H## enter? (##H = \dot{a}/a## is the Hubble parameter).
 
Physics news on Phys.org
The 0'th order eqn is $$ \partial_t \bar\rho ~+~ 3 H \bar\rho ~=~ 0 ~.$$ You must use this in the 1st order eqn.

Additional hint: before writing out the 1st order eqn, compute ##\,\partial_t \left( \frac{\delta\rho}{\bar\rho} \right)## carefully, separately, using the 0'th order eqn.

[Question for other HW helpers: does the above give away too much of the solution in one go? I'm never really sure where the balance lies.]
 
  • Like
Likes vanhees71 and ergospherical
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top