Location of the particles when 1.5 periods of a sound wave have passed

Click For Summary
When 1.5 periods of a sound wave pass, the discussion clarifies that compressions and rarefactions alternate, but there is confusion regarding the answer key's depiction. The answer key shows only 7 out of 9 particles at t=3s, leading to questions about the omission of P1 and P9. The initial positions indicate that P1, P2, and P3 form a compression, while P4, P5, and P6 create a rarefaction, and P7, P8, and P9 form another compression. It is suggested that the diagram's width may have limited the inclusion of all particles, but drawing all 9 in their correct positions is not considered wrong. The discussion emphasizes the importance of accurately representing particle positions in wave diagrams.
ellieee
Messages
78
Reaction score
6
Homework Statement
draw the positions of the particles for t=3.0s. particles take 2s to complete one full oscillation.
Relevant Equations
compressions and rarefactions
CamScanner 05-04-2021 14.01_6.jpg

qn iv.
I understand that when 1.5 periods pass, every compression will become rarefaction, and every rarefaction will become compression(someone please correct if wrong) but the answer key shows something else.
I'm interpreting the answer key drawing to be 1 compression and 4 rarefactions? someone pls correct me if I am wrong thank you:)
 

Attachments

  • CamScanner 05-06-2021 13.24_2_edit_9348621878260.jpg
    CamScanner 05-06-2021 13.24_2_edit_9348621878260.jpg
    11.6 KB · Views: 141
Physics news on Phys.org
I’m impressed by the way you have managed to manipulate the first image into a wave-shape, to match the topic. Well done!

Call the 9 particles (left-to-right) P1, P2, … P8 and P9.
This means P5 is what the question just calls ‘P’.

In your answer key diagram, the bottom row shows the t=0 positions of all 9 particles. But the top row (for t=3s) shows only 7 of the 9 particles.

At t=0:
P1, P2 and P3 form a compression;
P4, P5 and P6 form a rarefaction;
P7, P8 and P9 form a compression.

At t=3s (as shown on top row of answer key diagram):
P2 and P3 form part of a rarefaction (P1 is too far left to show on the diagram);
P4, P5 and P6 form a compression;
P7 and P8 form part of a rarefaction (P9 is too far right to show on the diagram).

Edit. Typo' corrected.
 
Last edited:
but what's their reason for not showing P9 and P1? if we still draw them out, is it "wrong"?
Steve4Physics said:
I’m impressed by the way you have managed to manipulate the first image into a wave-shape, to match the topic. Well done!

Call the 9 particles (left-to-right) P1, P2, … P8 and P9.
This means P5 is what the question just calls ‘P’.

In your answer key diagram, the bottom row shows the t=0 positions of all 9 particles. But the top row (for t=3s) shows only 7 of the 9 particles.

At t=0:
P1, P2 and P3 form a compression;
P4, P5 and P6 form a rarefaction;
P7, P8 and P9 form a compression.

At t=3s (as shown on top row of answer key diagram):
P2 and P3 form part of a rarefaction (P1 is too far left to show on the diagram);
P4, P5 and P6 form a compression;
P7 and P8 form part of a rarefaction (P9 is too far right to show on the diagram).

Edit. Typo' corrected.
 
ellieee said:
but what's their reason for not showing P9 and P1? if we still draw them out, is it "wrong"?
I'd guess that including P1 and P9 would make the diagram too wide to fit into the available printing-width.

Ideally, whoever prepared the diagrams should have made them smaller (less wide); then all 9 particles could be included in both the t=0 and t=3s diagrams.

It's not wrong to draw all 9 particles, providing they are in the correct positions. If there were enough space, that's what I'd do.
 
If have close pipe system with water inside pressurized at P1= 200 000Pa absolute, density 1000kg/m3, wider pipe diameter=2cm, contraction pipe diameter=1.49cm, that is contraction area ratio A1/A2=1.8 a) If water is stationary(pump OFF) and if I drill a hole anywhere at pipe, water will leak out, because pressure(200kPa) inside is higher than atmospheric pressure (101 325Pa). b)If I turn on pump and water start flowing with with v1=10m/s in A1 wider section, from Bernoulli equation I...

Similar threads

Replies
20
Views
5K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
11K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
24
Views
11K
Replies
5
Views
2K
  • · Replies 12 ·
Replies
12
Views
5K
  • · Replies 4 ·
Replies
4
Views
4K
Replies
1
Views
10K
  • · Replies 29 ·
Replies
29
Views
2K