Logic - clarification needed about implication

  • Thread starter Thread starter autodidude
  • Start date Start date
  • Tags Tags
    implication Logic
autodidude
Messages
332
Reaction score
0
If P→Q, and P is false but Q is true, then why is P→Q true? To me, it seems as though we shouldn't be able to do proceed because there isn't enough information. Same goes when P and Q are both false, how does that suggest P→Q is true?
 
Mathematics news on Phys.org
"If it rains, the street gets wet"
This statement is true, even if I spill water on the street (without rain).
More general: It cannot be false, if it does not rain. It just does not give any information about the street in that case.
 
Another reason for those definitions is so that logic "works" the way it should, for every combination of "true" and "false".

For example, "P implies Q" means the same (in ordinary English) as "if P is true, then Q is true", which means the same as "if Q is false, then P is false".

So the truth table for P→Q must be the same as for (not Q)→(not P),

That means P→Q must be defined as true, when P and Q are both false.

You can create a similar argument to show how P→Q must be defined with P is false and Q is true.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top