MHB Loglog Graph: Relation between N and E

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Graph Relation
AI Thread Summary
A log-log graph represents power relationships between variables, specifically in the form of y = ax^b. In this discussion, the relationship between variables N and E is explored through a log-log plot, which allows for the determination of coefficients a and c. The participants confirm that the log-log graph of E with respect to N translates to a linear function in logarithmic terms. To find the coefficients from data points, if the data is exact, two points can be used to create a system of equations. If the data is approximate, a least-squares fit is recommended before transforming the line to find a and c. One participant calculates values for a and c using specific data points but questions the accuracy of their results compared to Wolfram Alpha's output. The discussion concludes that minor discrepancies in results may not be significant due to the limitations of significant figures in the data.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

What does a loglog-graph represent?

For example if we have the following loglog-graph, which is the relation between $N$ and $E$ ?

View attachment 4871
 

Attachments

  • DK6D6.png
    DK6D6.png
    4.5 KB · Views: 89
Physics news on Phys.org
Straight lines on a log-log plot correspond to power relationships of the form $y=a x^b$. The log-log plot can help you determine $a$ and $b$. See the link for info on how to do that.
 
Ackbach said:
Straight lines on a log-log plot correspond to power relationships of the form $y=a x^b$. The log-log plot can help you determine $a$ and $b$. See the link for info on how to do that.

So the loglog-graph of $E$ in respect to $N$ represents the graph of $\log (E)$ in respect to $\log (N)$, right?

Since the graphical representation of the function $\log{E (\log N)}$ is a straight line we conclude that the function is linear, so $\log E= a \log N+c \Rightarrow E=10^c N^a$.

Is it right so far?

The following table shows N and E(N).
View attachment 4872How can we use it to find $c$ and $a$ ? (Thinking)
 

Attachments

  • gri.JPG
    gri.JPG
    3.6 KB · Views: 77
evinda said:
So the loglog-graph of $E$ in respect to $N$ represents the graph of $\log (E)$ in respect to $\log (N)$, right?

Since the graphical representation of the function $\log{E (\log N)}$ is a straight line we conclude that the function is linear, so $\log E= a \log N+c \Rightarrow E=10^c N^a$.

Is it right so far?

Yep!

The following table shows N and E(N). How can we use it to find $c$ and $a$ ? (Thinking)

That depends on whether the data you have is exactly on the graph, or only approximately on the graph. If exact, then just pick two points, get yourself a system of two equations in two unknowns, and solve. If inexact, then first you should fit a straight line to the data (typically least-squares fit), then just transform that line the way you just have, and you're done.
 
Ackbach said:
That depends on whether the data you have is exactly on the graph, or only approximately on the graph. If exact, then just pick two points, get yourself a system of two equations in two unknowns, and solve.

I took the last two data for $N$ and $E(N)$ and so I got the equations:

$$\log ( 164 \cdot 10^{-6})=a \log{(2 \cdot 10^2)}+c \\ \log{(41 \cdot 10^{-6})}= a \log{(4 \cdot 10^2)}+c$$

from which I got $a=-2, c=\log (656)-2$.

But according to log'('0.000164')''='a'*'log'('200')''+'c, log'('0.000041')''='a'*'log'('400')''+'c - Wolfram|Alpha the result is wrong.

So do you think that I might have a mistake at my calculations? Because I can't find one.. (Sweating)
 
evinda said:
I took the last two data for $N$ and $E(N)$ and so I got the equations:

$$\log ( 164 \cdot 10^{-6})=a \log{(2 \cdot 10^2)}+c \\ \log{(41 \cdot 10^{-6})}= a \log{(4 \cdot 10^2)}+c$$

from which I got $a=-2, c=\log (656)-2$.

But according to log'('0.000164')''='a'*'log'('200')''+'c, log'('0.000041')''='a'*'log'('400')''+'c - Wolfram|Alpha the result is wrong.

So do you think that I might have a mistake at my calculations? Because I can't find one.. (Sweating)

I'm confused. $\log(656)-2\approx 0.8169$, which is what W|A got.
 
Ackbach said:
I'm confused. $\log(656)-2\approx 0.8169$, which is what W|A got.

So is my result right although at [m] Wolfram [/m] it is $a \approx -2 $ while I got $a=-2$ ? (Thinking)
 
If W|A says it's approximately 2, I wouldn't worry about it. At that point, you probably don't have that many significant figures anyway, so worrying about that level of accuracy is counter-productive.
 

Similar threads

Replies
3
Views
2K
Replies
2
Views
733
  • Poll Poll
Replies
11
Views
3K
Replies
2
Views
1K
Replies
7
Views
2K
Replies
10
Views
3K
Replies
1
Views
4K
Back
Top