Posty McPostface said:
Could you please expand on that, if you don't mind?
Think about a real number that is an infinite, non-repeating decimal, and is not the solution of a rational polynomial (algebraic numbers) or a function of a particular named transcendental number such as pi or e.
The only way to specify such a number is by an
infinite sequence of numerals after the decimal point. We can neither write nor read such a sequence. Yet it is only such numbers that make up the uncountable part of the uncountable set of real numbers. Let's call them the Unwritable Irrationals. The numbers that can be written by finite symbol strings - rationals, algebraics, functions of e or pi, trig or exponential transformations of rationals - form a countable set.
It is for this reason that some famous logician - I think it may have been
Skolem - denied, or at least challenged, the existence of uncountable sets.
Similarly, if an alphabet is uncountable, we need some way to refer to each member of it, and the only way we can refer to an element of an uncountable set using the finite set of symbols we humans can recognise (letters, numerals etc) is by using an infinite sequence of such recognisable symbols, just like we imagine using an infinite sequence of numerals to refer to an Unwritable Irrational. But we can neither write nor read such a sequence.
Posty McPostface said:
But, that doesn't disprove the assumed 'loophole' in Godel's Incompleteness Theorems?
I'm not sure what you mean by a loophole. A theorem generally says that objects with a certain set of properties (premises) have a particular other property (conclusion). One of the premise properties of the Gödel theorem is that the language have a countable alphabet. So a language that has an uncountable alphabet is simply outside the scope of the theorem, not a loophole.
We don't say that Pythagoras's theorem has a loophole because it doesn't work for non-right-angled triangles. They are just outside its scope. [Fun fact - the generalisation of Pythagoras's Theorem to cover non-right-triangles is the
Cosine Rule].