jostpuur
- 2,112
- 19
Can somebody give an example of two matrices a_1 and a_2 which would satisfy the relation
<br /> a_i a_j^{\dagger} + a_j^{\dagger} a_i = \delta_{ij}<br />
I know that
<br /> \left(\begin{array}{cc}<br /> 0 & 1 \\ 0 & 0 \\<br /> \end{array}\right)<br /> \left(\begin{array}{cc}<br /> 0 & 0 \\ 1 & 0 \\<br /> \end{array}\right)<br /> + \left(\begin{array}{cc}<br /> 0 & 0 \\ 1 & 0 \\<br /> \end{array}\right)<br /> \left(\begin{array}{cc}<br /> 0 & 1 \\ 0 & 0 \\<br /> \end{array}\right)<br /> = 1<br />
but I found myself unable to modify this for the index i\in\{1,2\}.
<br /> a_i a_j^{\dagger} + a_j^{\dagger} a_i = \delta_{ij}<br />
I know that
<br /> \left(\begin{array}{cc}<br /> 0 & 1 \\ 0 & 0 \\<br /> \end{array}\right)<br /> \left(\begin{array}{cc}<br /> 0 & 0 \\ 1 & 0 \\<br /> \end{array}\right)<br /> + \left(\begin{array}{cc}<br /> 0 & 0 \\ 1 & 0 \\<br /> \end{array}\right)<br /> \left(\begin{array}{cc}<br /> 0 & 1 \\ 0 & 0 \\<br /> \end{array}\right)<br /> = 1<br />
but I found myself unable to modify this for the index i\in\{1,2\}.
Last edited: