MHB LU decomposition: Total pivoting

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Decomposition
AI Thread Summary
The discussion focuses on determining the LU decomposition of a matrix with total pivoting, specifically for the matrix A. The participants detail the steps taken to perform row and column exchanges to achieve the upper triangular matrix U and discuss the definitions of permutation matrices P and P_i. There is confusion regarding the correct formulation of the matrix L and its relationship with the permutation matrices and inverses of the Gaussian elimination steps. Ultimately, it is clarified that the relationship should be expressed as LU = PAQ, where P and Q account for the row and column permutations, respectively. The final consensus is that the calculations for L are correct, and the relationship between the matrices is properly established.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I want to determine the LU decomposition of
$A=\begin{pmatrix}0 & 2 & 1\\1 & 10 & 1 \\1 & 1 & 1\end{pmatrix}$ with total pivoting. I have done the following:

The biggest element of the whole matrix is $10$, so we exchange the first two rows and the first two columns and then we get $\begin{pmatrix}10 & 1 & 1 \\2 & 0 & 1\\1 & 1 & 1\end{pmatrix}$.
Applying now the Gauss algorithm we get $\begin{pmatrix}10 & 1 & 1 \\0 & -\frac{1}{5} & \frac{4}{5}\\0 & \frac{9}{10} & \frac{9}{10}\end{pmatrix}$.
The biggest element of the submatrix is $\frac{9}{10}$ and so we exchange the last two rows and get: $\begin{pmatrix}10 & 1 & 1 \\ 0 & \frac{9}{10} & \frac{9}{10} \\ 0 & -\frac{1}{5} & \frac{4}{5} \end{pmatrix}$. Now we apply the Gauss algorithm and get: $\begin{pmatrix}10 & 1 & 1 \\ 0 & \frac{9}{10} & \frac{9}{10} \\ 0 & 0 & 1 \end{pmatrix}$.

The matrix $U$ is the resulting matrix, $U=\begin{pmatrix}10 & 1 & 1 \\ 0 & \frac{9}{10} & \frac{9}{10} \\ 0 & 0 & 1 \end{pmatrix}$.

The matrix $L$ is $L=P\cdot P_0\cdot G_1^{-1}\cdot P_1\cdot G_2^{-1}$, or not? (Wondering)

The matrices $G_i^{-1}$ are defined as:
$$G_1^{-1}=\begin{pmatrix}1 & 0 & 0 \\\frac{2}{10} & 1 & 0\\\frac{1}{10} & 0 & 1\end{pmatrix} \ \text{ and } \ G_2^{-1}=\begin{pmatrix}1 & 0 & 0 \\0 & 1 & 0\\0 & -\frac{2}{9} & 1\end{pmatrix}$$ or not? (Wondering)


Are the matrices $P_i$ defined as follows?
$$P_0=\begin{pmatrix}1 & 0 & 0 \\0 & 1 & 0\\0 & 0 & 1\end{pmatrix}$$ since this describes the step at which we exchanged the first two rows and the first two columns. (Wondering)
$$P_1=\begin{pmatrix}1 & 0 & 0 \\0 & 0 & 1\\0 & 1 & 0\end{pmatrix}$$ since this describes the step at which we exchanged the two last rows. (Wondering) If these are correct, it doesn't hold that $LU=PA$, does it? (Wondering)
 
Last edited by a moderator:
Mathematics news on Phys.org
mathmari said:
Are the matrices $P_i$ defined as follows?
$$P_0=\begin{pmatrix}1 & 0 & 0 \\0 & 1 & 0\\0 & 0 & 1\end{pmatrix}$$ since this describes the step at which we exchanged the first two rows and the first two columns. (Wondering)
$$P_1=\begin{pmatrix}1 & 0 & 0 \\0 & 0 & 1\\0 & 1 & 0\end{pmatrix}$$ since this describes the step at which we exchanged the two last rows.

Hey mathmari!

It should be clear that
$$P_0=\begin{pmatrix}1 & 0 & 0 \\0 & 1 & 0\\0 & 0 & 1\end{pmatrix}$$
cannot be correct. It is the identity matrix, isn't it? (Worried)

Let's define instead:
$$P_0=\begin{pmatrix}0 & 1 & 0 \\1 & 0 & 0\\0 & 0 & 1\end{pmatrix}$$
This is the matrix that swaps either 2 rows or 2 columns, isn't it?
And it's its own inverse. That is, $P_0^{-1}=P_0$.

Swapping 2 rows is a permutation on the left.
However, swapping 2 columns is a permutation on the right.
So after those 2 permutations we have $P_0 A P_0$. (Thinking)

mathmari said:
If these are correct, it doesn't hold that $LU=PA$, does it?

Shouldn't it be $LU=PAQ$, where $P$ reorders the rows of $A$ and $Q$ reorders the columns of $A$? (Wondering)

mathmari said:
The matrix $L$ is $L=P\cdot P_0\cdot G_1^{-1}\cdot P_1\cdot G_2^{-1}$, or not?

I don't think so. We have:
$$R = G_2 \cdot P_1 \cdot G_1 \cdot P_0 \cdot A \cdot P_0$$
From this we have to deduce $L$ such that:
$$LR = PAQ$$
Don't we? (Wondering)
 
We have $R=\begin{pmatrix}10 & 1 & 1 \\ 0 & \frac{9}{10} & \frac{9}{10} \\ 0 & 0 & 1 \end{pmatrix}$.

Since $R = G_2 \cdot P_1 \cdot G_1 \cdot P_0 \cdot A \cdot P_0$ we get that $$L\cdot G_2 \cdot P_1 \cdot G_1 \cdot P_0 \cdot A \cdot P_0=P\cdot A\cdot P_0 \Rightarrow L =P\cdot P_0^{-1}\cdot G_1^{-1}\cdot P_1^{-1}\cdot G_2^{-1} \Rightarrow L=P_1\cdot G_1^{-1}\cdot P_1\cdot G_2^{-1}$$

We have the matrices $$G_1^{-1}=\begin{pmatrix}1 & 0 & 0 \\\frac{2}{10} & 1 & 0\\\frac{1}{10} & 0 & 1\end{pmatrix} \ \text{ and } \ G_2^{-1}=\begin{pmatrix}1 & 0 & 0 \\0 & 1 & 0\\0 & -\frac{2}{9} & 1\end{pmatrix}$$ We also have the matrices $$P_0=\begin{pmatrix}0 & 1 & 0 \\1 & 0 & 0\\0 & 0 & 1\end{pmatrix} \ \text{ and } \ P_1=\begin{pmatrix}1 & 0 & 0 \\0 & 0 & 1\\0 & 1 & 0\end{pmatrix}$$

So we get $$L=\begin{pmatrix}1 & 0 & 0 \\0 & 0 & 1\\0 & 1 & 0\end{pmatrix}\begin{pmatrix}1 & 0 & 0 \\\frac{2}{10} & 1 & 0\\\frac{1}{10} & 0 & 1\end{pmatrix}\begin{pmatrix}1 & 0 & 0 \\0 & 0 & 1\\0 & 1 & 0\end{pmatrix}\begin{pmatrix}1 & 0 & 0 \\0 & 1 & 0\\0 & -\frac{2}{9} & 1\end{pmatrix}=\begin{pmatrix}1 & 0 & 0 \\ \frac{1}{10} & 1 & 0 \\ \frac{1}{5} & -\frac{2}{9} & 1\end{pmatrix}$$

Is this correct? (Wondering)
 
mathmari said:
Since $R = G_2 \cdot P_1 \cdot G_1 \cdot P_0 \cdot A \cdot P_0$ we get that $$L\cdot G_2 \cdot P_1 \cdot G_1 \cdot P_0 \cdot A \cdot P_0=P\cdot A\cdot P_0 \Rightarrow L =P\cdot P_0^{-1}\cdot G_1^{-1}\cdot P_1^{-1}\cdot G_2^{-1} \Rightarrow L=P_1\cdot G_1^{-1}\cdot P_1\cdot G_2^{-1}$$

How did you get $P\cdot P_0^{-1}=P_1$ ?
I think that the $P$ we will get, will be incorrect. (Worried)

mathmari said:
So we get $$L=\begin{pmatrix}1 & 0 & 0 \\0 & 0 & 1\\0 & 1 & 0\end{pmatrix}\begin{pmatrix}1 & 0 & 0 \\\frac{2}{10} & 1 & 0\\\frac{1}{10} & 0 & 1\end{pmatrix}\begin{pmatrix}1 & 0 & 0 \\0 & 0 & 1\\0 & 1 & 0\end{pmatrix}\begin{pmatrix}1 & 0 & 0 \\0 & 1 & 0\\0 & -\frac{2}{9} & 1\end{pmatrix}=\begin{pmatrix}1 & 0 & 0 \\ \frac{1}{10} & 1 & 0 \\ \frac{1}{5} & -\frac{2}{9} & 1\end{pmatrix}$$

Is this correct?

Yes. (Nod)
 
Klaas van Aarsen said:
How did you get $P\cdot P_0^{-1}=P_1$ ?
I think that the $P$ we will get, will be incorrect. (Worried)

Do we not have $P=P_1P_0 \Rightarrow PP_0^{-1}=P_1$ ? (Wondering)
 
mathmari said:
Do we not have $P=P_1P_0 \Rightarrow PP_0^{-1}=P_1$ ?

Ah yes, $P$ has to be whatever row permutation it takes to ensure that $L$ is a lower triangular matrix.

We have:
$$L =P\cdot P_0^{-1}\cdot G_1^{-1}\cdot P_1^{-1}\cdot G_2^{-1}$$
And $G_1^{-1}$ and $G_2^{-1}$ are lower triangular.
Since $P_1\cdot G_1^{-1}\cdot P_1^{-1}$ is a conjugation, it is lower triangular as well.
That is, we swap 2 rows and we also swap the corresponding 2 columns, so that the triangular form is retained. (Nerd)

So we can indeed pick $\smash{P\cdot P_0^{-1}=P_1}$.
I must have made a calculation mistake earlier. (Blush)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
2
Views
2K
Replies
10
Views
2K
Replies
4
Views
1K
Replies
9
Views
3K
Replies
16
Views
4K
Replies
21
Views
4K
Back
Top