ToastIQ
- 11
- 0
Hello,
I'm supposed to calculate the limit of this:
$$\lim_{{x}\to{1}}\left(\frac{x}{x-1}-\frac{1}{\ln x}\right)$$
Combining the fractions:
$$ \frac{x}{x-1}-\frac{1}{\ln x} = \frac{x\ln x-x+1}{(x-1)\ln x} $$
The substitute
$$ u=x-1 \implies x=1+u $$
then gives
$$\frac{(1+u)\ln(1+u)-1-u+1}{(1+u-1)\ln(1+u)}$$
Maclaurin expansion of $$\ln(1+u) $$ :
$$\ln(1+u) = u-\frac{u^2}{2}+u^3B(u) $$
Am I on the right path or am I completely misunderstanding this problem? It looks weird to me when I try to put it all together and I haven't been able to come to the right solution (which is $$ \frac{1}{2} $$ ).
I'm supposed to calculate the limit of this:
$$\lim_{{x}\to{1}}\left(\frac{x}{x-1}-\frac{1}{\ln x}\right)$$
Combining the fractions:
$$ \frac{x}{x-1}-\frac{1}{\ln x} = \frac{x\ln x-x+1}{(x-1)\ln x} $$
The substitute
$$ u=x-1 \implies x=1+u $$
then gives
$$\frac{(1+u)\ln(1+u)-1-u+1}{(1+u-1)\ln(1+u)}$$
Maclaurin expansion of $$\ln(1+u) $$ :
$$\ln(1+u) = u-\frac{u^2}{2}+u^3B(u) $$
Am I on the right path or am I completely misunderstanding this problem? It looks weird to me when I try to put it all together and I haven't been able to come to the right solution (which is $$ \frac{1}{2} $$ ).