I do not think any relativistic effects come into this as average electron velocity (~amperes) in a wire conductor does not reach relativistic speeds. Biot-Savart law is obviously good enough for most of electric and electronics circuits and practical application, like Coulomb's law, but even if there was any error correction needed, that would not change the general shape of the field, it would only distort it.
Ok, can you say something about force vectors, are they opposite in direction, where do they point? Does F(1-2) point from 1 to 2, from somewhere else to 2, or from 1 to somewhere else?
According to what experiment? I do not see anyone asserted Biot-Savart alone gives wrong answers for finite segments. I do not see why would Biot-Savart be any more inaccurate than Coulomb's law visa vi SR and why would not fields of individual particles add up to give the correct result as a 'compound field' just because wire makes a turn or "ends".
By the way I found a better description for this shape of magnetic field around a single moving charge. If we take a ball to represent the shape of electric field, then the shape of magnetic field would look like the ball we squeeze from two points, from behind and from the front along its velocity vector until the points touch in the middle. It is sort of doughnut shape and there is a very small singularity hole along the velocity vector, i.e. there is no magnetic filed immediately behind and in front of the moving charge.