Magnetization of the free electron gas

  • Thread starter Thread starter chwu
  • Start date Start date
chwu
Messages
1
Reaction score
0
Homework Statement
Show that, with this definition the total energy of the spin up components reads:
$$U^+ = U_0 (1+x)^{5/3} + \frac{1}{2} N \mu_B B (1+x)$$ where $$U_0=\frac{3}{10} N E_F$$, in terms of the usual Fermi energy of the gas at $$B=0; E_F = \hbar^2 (3\pi^2 N/V)^{2/3}/(2m)$$. Find the corresponding expression for $$U^-$$
Relevant Equations
$$N^+ = \frac{1}{2} N (1+x)$$ and $$N^- = \frac{1}{2} N (1-x)$$
Hello everybody, I tried the following approach. I calculated the density of states for the spin up states:

$$g_+(\epsilon + \mu_BB) = (1/2) g(\epsilon) \Rightarrow g_+ \frac{1}{2} g(\epsilon - \mu_B B)$$. As far as I understand it, this comes from the fact that when there is no magnetic field the spin up and spin down make up excactly half of the density of states (and of the occupation number) Now i'd like to perform the integral $$U_+ = \int_0^{E_F(B)} \epsilon g_+(\epsilon) d\epsilon$$, but for this I need the Fermi energy depending on the magnetic field $$E_F(B)$$ and I do not know yet how to obtain it. In fact I would like to obtain $$E_F(B)$$ in terms of x. Any help is appreciated, thanks in advance!
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top