Let's take a very simple example. The four-potential can be taken as a one-form
$$A=A_{\mu} \mathrm{d} x^{\mu}.$$
It's "exterior derivative" is by definition the Faraday two-form
$$F=\mathrm{d} A=\partial_{\mu} A_{\nu} \mathrm{d} x^{\mu} \wedge \mathrm{d} x^{\nu}.$$
Since by definition the wedge product is skew symmetric, the unique way to map this to its components is to completely antisymmetrize them, i.e., in this case you have
$$F=\frac{1}{2} (\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}) \mathrm{d} x^{\mu} \wedge \mathrm{d} x^{\nu}.$$
Now take the exterior derivative of this, which is a three-form
$$\mathrm{d} F = \frac{1}{2} \partial_{\rho} F_{\mu \nu} \mathrm{d} x^{\rho} \wedge \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}.$$
This maps one-to-one to the totally antisymmetrized components
$$G_{\rho \mu \nu}=\partial_{\rho} F_{\mu \nu} -\partial_{\mu} F_{\rho \nu} - \partial_{\nu} F_{\mu \rho}=\partial_{\rho} F_{\mu \nu} + \partial_{\mu} F_{\nu \rho} + \partial_{\nu} F_{\rho \mu},$$
i.e., to the "cylcic sum", and so on.
Now the totally antisymmetric components of the three-form, can be mapped to 1st-rank-tensor components
$$G_{\rho \mu \nu} = \epsilon_{\rho \mu \nu \sigma} (^\dagger G)^{\sigma}.$$
Obviously we have
$$(^\dagger G)^{\sigma} = \det \hat{\eta} \frac{1}{3!} \epsilon^{\rho \mu \nu \sigma} G_{\rho \mu \nu}=-\frac{1}{3!} \epsilon^{\rho \mu \nu \sigma} G_{\rho \mu \nu}.$$
The somewhat cumbersome factor ##\det \hat{\eta}=-1## comes from the pseudometric ##\hat{\eta}=\mathrm{diag}(1,-1,-1,-1)##, and one defines by convention ##\epsilon^{\mu \nu \rho \sigma}=\text{sign}(\mu,\nu,\rho\,sigma)##, i.e., as the totally antisymmetric Levi-Civita symbol with ##\epsilon^{0123}##. Since then lowering the indices is done with ##\eta_{\mu \nu}## as for any other tensor components you have ##\epsilon_{\mu \nu \rho \sigma}=-\epsilon^{\mu \nu \rho \sigma}##, and that's where the minus sign comes from in the Hodge dual.
Now we can write the homogeneous Maxwell equations as
$$G_{\rho \mu \nu}=0$$
or equivalently as
$$(^{\dagger} G)^{\sigma} = -\frac{1}{6!} G_{\rho \mu \nu} \epsilon^{\rho \mu \nu \sigma}=0.$$
This means that
$$\epsilon^{\rho \mu \nu \sigma} \partial_{\rho} F_{\mu \nu}=+\epsilon^{\mu \nu \rho \sigma} \partial_{\rho} F_{\mu \nu} \partial_{\rho} (^\dagger F)^{\rho \sigma}=0$$
is a more compact form of ##\mathrm{d} F=0## when using the index notation than writing out the cyclic form ##G_{\rho \mu \nu}##.
In the same way you can show that the inhomogeneous Maxwell equations
$$\partial_{\mu} F^{\mu \nu}=\frac{1}{c} j^{\nu}$$
can be written as
$$\mathrm{d} ^{\dagger} F=^{\dagger} j.$$