Also, one thing I'm slightly confused over now is, if one wishes to compare two vectors at different points in a flat space, then one can uniquely parallel transport one of the vectors to the other and compare them at the same point in a well defined manner. However, this is not around a closed loop and so the components of the parallel transported vector will change, in general (unless one uses Cartesian coordinates), so how can one meaningfully compare the two vectors (for example, suppose it is the same vector, but at two different points, with the same components at both points)? (Apologies, this may be a stupid question - it's a bit late at night and my brain has gone a bit to mush)