A Manifolds: local & global coordinate charts

  • #31
Frank Castle said:
Ah ok, what would it be exactly?
What would what be? In order to derive the relation with the Riemann tensor, you need to do several parallel transports (4 to be exact) and remember to take into account that the Christoffel symbols will change (hence the appearance of the derivatives of the Christoffel symbols in the Riemann tensor).

Frank Castle said:
Is the point essentially that, on a flat manifold, Racbd=0Rcbda=0 R_{cbd}^a=0, and so δvμ=0δvμ=0\delta v^{\mu}=0, i.e. the components of the vector remain unchanged under parallel transport in flat space?!
No, again we are talking about a parallel transport around a closed loop. If the components change during an arbitrary parallel transport depends on the coordinate system and whether the Christoffel symbols are zero in that particular system or not (remember that the Christoffel symbols being zero is not equivalent to zero curvature!). For example, the components of a vector in Euclidean space do change under parallel transport if you use spherical coordinates. The point is that when you parallel transport around a loop you end up with a vector in the same tangent space as you started in! (In other words, a closed loop defines a type (1,1) tensor at the start/end-point through parallel transport along it and so finding ##\delta v = 0## is a coordinate independent statement.)
 
Physics news on Phys.org
  • #32
Orodruin said:
What would what be? In order to derive the relation with the Riemann tensor, you need to do several parallel transports (4 to be exact) and remember to take into account that the Christoffel symbols will change (hence the appearance of the derivatives of the Christoffel symbols in the Riemann tensor).

Ah ok, I'll have to work through it then.

Orodruin said:
No, again we are talking about a parallel transport around a closed loop. If the components change during an arbitrary parallel transport depends on the coordinate system and whether the Christoffel symbols are zero in that particular system or not (remember that the Christoffel symbols being zero is not equivalent to zero curvature!). For example, the components of a vector in Euclidean space do change under parallel transport if you use spherical coordinates. The point is that when you parallel transport around a loop you end up with a vector in the same tangent space as you started in! (In other words, a closed loop defines a type (1,1) tensor at the start/end-point through parallel transport along it and so finding δv=0δv=0\delta v = 0 is a coordinate independent statement.)

Good point, I hadn't fully thought that through.

Thanks for all of your help, I really appreciate it!
 
  • #33
Frank Castle said:
Ah ok, I'll have to work through it then.
One thing to note is that it is usually much (much!) easier to work it through if you start the parallel transport at the middle of the loop and perform the parallel transport in the two different directions. This should also be done in any introductory text on the calculus on manifolds.
 
  • #34
Orodruin said:
One thing to note is that it is usually much (much!) easier to work it through if you start the parallel transport at the middle of the loop and perform the parallel transport in the two different directions. This should also be done in any introductory text on the calculus on manifolds.

Thanks for the tips, are there any books that you would recommend in particular?

Also, one thing I'm slightly confused over now is, if one wishes to compare two vectors at different points in a flat space, then one can uniquely parallel transport one of the vectors to the other and compare them at the same point in a well defined manner. However, this is not around a closed loop and so the components of the parallel transported vector will change, in general (unless one uses Cartesian coordinates), so how can one meaningfully compare the two vectors (for example, suppose it is the same vector, but at two different points, with the same components at both points)? (Apologies, this may be a stupid question - it's a bit late at night and my brain has gone a bit to mush)
 
Last edited:
  • #35
Frank Castle said:
However, this is not around a closed loop and so the components of the parallel transported vector will change, in general (unless one uses Cartesian coordinates), so how can one meaningfully compare the two vectors (for example, suppose it is the same vector, but at two different points, with the same components at both points)?
If the vectors are in the same vector space, you can compare them using the normal addition/subtraction in that vector space. It does not matter what the components are in some arbitrary coordinate system. You simply do the parallel transport and compare the result with the other vector at the point.
 
  • #36
Frank Castle said:
Also, one thing I'm slightly confused over now is, if one wishes to compare two vectors at different points in a flat space, then one can uniquely parallel transport one of the vectors to the other and compare them at the same point in a well defined manner. However, this is not around a closed loop and so the components of the parallel transported vector will change, in general (unless one uses Cartesian coordinates), so how can one meaningfully compare the two vectors (for example, suppose it is the same vector, but at two different points, with the same components at both points)? (Apologies, this may be a stupid question - it's a bit late at night and my brain has gone a bit to mush)

Am I just being stupid here, since it is natural that, in a non Cartesian coordinate basis, the basis vectors will vary from point to point so one would expect the components of a vector (with respect to this basis) to vary as one parallel transports the vector from one point to another, in order to keep it parallel to itself. The important point of why one can compare two vectors residing in different tangent spaces (at different points) in flat space is that the path connecting the two tangent spaces, along which one parallel transports one vector to the other to compare them, is unique, and so the comparison of vectors residing in different tangent spaces (in flat space) is a well defined concept?!
(Of course, in a curved space, it is not meaningful to compare vectors in two different tangent spaces (at least from a physical perspective) since the path one parallel transports one vector to the other along is not unique and so it is not well defined, since parallel transport along different paths will yield different results).
 
  • #37
Orodruin said:
If the vectors are in the same vector space, you can compare them using the normal addition/subtraction in that vector space. It does not matter what the components are in some arbitrary coordinate system. You simply do the parallel transport and compare the result with the other vector at the point.

Ah ok. Would what I put in my post above (post #36) be correct at all then?
 
  • #38
Frank Castle said:
The important point of why one can compare two vectors residing in different tangent spaces (at different points) in flat space is that the path connecting the two tangent spaces, along which one parallel transports one vector to the other to compare them, is unique, and so the comparison of vectors residing in different tangent spaces (in flat space) is a well defined concept?!
No, the important point is that the parallel transport is independent of the path (again, as long as the manifold is simply connected). Therefore it does not matter which path you select, the result will be the same.
 
  • #39
Orodruin said:
No, the important point is that the parallel transport is independent of the path (again, as long as the manifold is simply connected). Therefore it does not matter which path you select, the result will be the same.

So, just to check, in the case of a more general manifold (with a "curved" geometry), parallel transport is not independent of the path taken between two tangent spaces and so comparison of vectors at two different points is not well defined, in the sense that the result depends on the path taken?! Is this why in GR, the velocity of a distant galaxy, for example, is not well defined, since the result is dependent on the path we use to parallel transport its velocity vector to the tangent space to our location?
 
  • #40
Frank Castle said:
So, just to check, in the case of a more general manifold (with a "curved" geometry), parallel transport is not independent of the path taken between two tangent spaces and so comparison of vectors at two different points is not well defined, in the sense that the result depends on the path taken?!
Right.

Frank Castle said:
Is this why in GR, the velocity of a distant galaxy, for example, is not well defined, since the result is dependent on the path we use to parallel transport its velocity vector to the tangent space to our location?
Yes.
 
  • #41
Orodruin said:
Right.Yes.

Ok, great. I think things are starting to become a little clearer now. Thanks!
 

Similar threads

  • · Replies 44 ·
2
Replies
44
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 37 ·
2
Replies
37
Views
6K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 73 ·
3
Replies
73
Views
7K
  • · Replies 6 ·
Replies
6
Views
4K