Manipulating Tensor Expressions to Derive the Poincare Algebra

stormyweathers
Messages
7
Reaction score
0
Hey guys,

as this is a basic QFT question, I wasn't sure to put it in the relativity or quantum section. Since this question specifically is about manipulating tensor expressions, i figured here would be appropriate.


My question is about equating coefficients in tensor expressions, 2.4.10-11 in Weinberg's Quantum Theory of Fields (2005).

i[ 1/2 \omega_{\mu \nu} J^{\mu \nu} - \epsilon_{mu}P^{\mu}, J^{\rho \sigma} ] = \omega_{\mu}^{\rho} J^{\mu \sigma} - \omega_{\nu}^{\sigma} J^{\rho \nu} - \epsilon^{\rho}P^{\sigma}+ \epsilon^{\sigma}P^{\rho}

i [ 1/2 \omega_{\mu \nu} J^{\mu \nu} - \epsilon_{\mu} P^{\mu} ,P^{\rho} ]=\omega_{\mu}^{\rho} P^{\mu}

The task is to equate coefficients on the epsilon and omega terms to find the commutators of the poincare algebra. I'm a bit confused because, for instance, the omega term on the LHS of the first equation has dummy indices, but on the RHS has real indices. I'm not sure what manipulations i can do besides raising and lowering with the metric.
 
Physics news on Phys.org
In order to equate coefficients, for example with the (2.4.11) expression, you can expand the commutator and collect all the coefficients together on the left hand side so that it looks like:
<br /> -\frac{i}{2}\omega_{\mu\nu}\left[P^{\rho},J^{\mu\nu}\right] + i\epsilon_{\mu}\left[P^{\rho},P^{\mu}\right] = \omega_{\mu}^{\ \ \rho}P^{\mu}=\eta^{\rho\nu}\omega_{\mu\nu}P^{\mu}<br />
This already gives you the (2.4.14) result because there is no εμ coefficient on the right-hand side. With the ω coefficients you have to do a little work because they are not in a form you can get (2.4.13) directly with. Notice that the left-hand side is completely symmetric under μ↔ν (this is because ωμν and Jμν are both completely antisymmetric). This means the right-hand side must also be symmetric under this exchange. You know that you can write the symmetric part of a tensor Aij (the whole part here) as (Aij+Aji)/2. Therefore you can do this with the right-hand side and write:
<br /> -\frac{i}{2}\omega_{\mu\nu}\left[P^{\rho},J^{\mu\nu}\right] = \frac{1}{2}\left(\eta^{\rho\nu}\omega_{\mu\nu}P^{\mu} + \eta^{\rho\mu}\omega_{\nu\mu}P^{\nu}\right)<br />
That cancels out the factors of 1/2 and you can get the ωμν and ωνμ to look the same by using the antisymmetry of ωνμ=-ωμν. That leaves you with:
<br /> i\omega_{\mu\nu}\left[P^{\rho},J^{\mu\nu}\right] = \omega_{\mu\nu}\left(\eta^{\rho\mu}P^{\nu} - \eta^{\rho\nu}P^{\mu}\right)<br />
which gives you what he has, only with different greek letters for the indices.
 
  • Like
Likes Gliderpilot9
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top