"Black string solutions with negative cosmological constant"(adsbygoogle = window.adsbygoogle || []).push({});

By Robert B. Mann, Eugen Radu, Cristian Stelea

It is a remarkable work in my point of view. They present an arguments for the existence of new black string solutions with negative cosmological constant.

These higher-dimensional configurations have no dependence on the `compact' extra dimension, and their conformal infinity is the product of time and $S^{d-3}\times R$ or $H^{d-3}\times R$.

The configurations with an event horizon topology $S^{d-2}\times S^1$ have a nontrivial, globally regular limit with zero event horizon radius.

They discuss the general properties of such solutions and, using a counterterm prescription, they compute their conserved charges and discuss their thermodynamics.

Upon performing a dimensional reduction they prove that the reduced action has an effective $SL(2,R)$ symmetry.

This symmetry is used to construct non-trivial solutions of the Einstein-Maxwell-Dilaton system with a Liouville-type potential for the dilaton in $(d-1)$-dimensions.

Interesting!!!

**Physics Forums | Science Articles, Homework Help, Discussion**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Mann's new paper

**Physics Forums | Science Articles, Homework Help, Discussion**