MHB Mason's question via Facebook about solving a system of equations

Click For Summary
The discussion revolves around solving a system of equations involving three variables: x, y, and z. The equations are manipulated using techniques such as finding the least common multiple (LCM) of coefficients, multiplying equations to align them, and applying row operations to simplify the system. The final solution obtained through these methods is x = 5, y = 8, and z = -6. The conversation also suggests that representing the solution in matrix form and using Gaussian elimination could be beneficial for further analysis. The solution process highlights the effectiveness of systematic approaches in solving linear equations.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Solve the following system for $\displaystyle \begin{align*} x, y, z \end{align*}$:

$\displaystyle \begin{align*} 5\,x - 2\,y + z &= 3 \\ 3\,x + y + 3\,z &= 5 \\ 6\,x + y - 4\,z &= 62 \end{align*}$

The LCM of the $\displaystyle \begin{align*} x \end{align*}$ coefficients is 30, so multiplying the first equation by 6, the second by 10 and the third by 5 gives

$\displaystyle \begin{align*} 30\,x - 12\,y + 6\,z &= 18 \\ 30\,x + 10\,y + 30\,z &= 50 \\ 30\,x + 5\,y - 20\,z &= 310 \end{align*}$

Applying R2 - R1 to R2 and R3 - R1 to R3 we have

$\displaystyle \begin{align*} 30\,x + 12\,y - 6\,z &= 18 \\ 22\,y + 24\,z &= 32 \\ 17\,y - 26\,z &= 292 \end{align*}$

Dividing the second equation by 2 gives

$\displaystyle \begin{align*} 30\,x + 12\,y - 6\,z &= 18 \\ 11\,y + 12\,z &= 16 \\ 17\,y - 26 \,z &= 292 \end{align*}$

The LCM of the y coefficients in rows 2 and 3 is 187, so multiplying the second equation by 17 and the third equation by 11 we have

$\displaystyle \begin{align*} 30\,x + 12\,y - 6\,z &= 18 \\ 187\,y + 204\,z &= 272 \\ 187\,y - 286\,z &= 3\,212 \end{align*}$

Applying R3 - R2 to R2 we have

$\displaystyle \begin{align*} 30\,x + 12\,y - 6\,z &= 18 \\ 187\,y + 204\,z &= 272 \\ - 490\,z &= 2\,940 \end{align*}$

Since $\displaystyle \begin{align*} -490\,z = 2\,940 \implies z = -6 \end{align*}$, then

$\displaystyle \begin{align*} 187\,y + 204 \, \left( -6 \right) &= 272 \\ 187\,y - 1\,224 &= 272 \\ 187\,y &= 1\,496 \\ y &= 8 \end{align*}$

and

$\displaystyle \begin{align*} 5\,x - 2\,\left( 8 \right) + \left( -6 \right) &= 3 \\ 5\,x - 22 &= 3 \\ 5\,x &= 25 \\ x &= 5 \end{align*}$

So the solution is $\displaystyle \begin{align*} \left( x , y , z \right) = \left( 5, 8, -6 \right) \end{align*}$.
 
Mathematics news on Phys.org
Prove It said:
The LCM of the $\displaystyle \begin{align*} x \end{align*}$ coefficients is 30, so multiplying the first equation by 6, the second by 10 and the third by 5 gives

$\displaystyle \begin{align*} 30\,x - 12\,y + 6\,z &= 18 \\ 30\,x + 10\,y + 30\,z &= 50 \\ 30\,x + 5\,y - 20\,z &= 310 \end{align*}$

Applying R2 - R1 to R2 and R3 - R1 to R3 we have

$\displaystyle \begin{align*} 30\,x + 12\,y - 6\,z &= 18 \\ 22\,y + 24\,z &= 32 \\ 17\,y - 26\,z &= 292 \end{align*}$

Dividing the second equation by 2 gives

$\displaystyle \begin{align*} 30\,x + 12\,y - 6\,z &= 18 \\ 11\,y + 12\,z &= 16 \\ 17\,y - 26 \,z &= 292 \end{align*}$

The LCM of the y coefficients in rows 2 and 3 is 187, so multiplying the second equation by 17 and the third equation by 11 we have

$\displaystyle \begin{align*} 30\,x + 12\,y - 6\,z &= 18 \\ 187\,y + 204\,z &= 272 \\ 187\,y - 286\,z &= 3\,212 \end{align*}$

Applying R3 - R2 to R2 we have

$\displaystyle \begin{align*} 30\,x + 12\,y - 6\,z &= 18 \\ 187\,y + 204\,z &= 272 \\ - 490\,z &= 2\,940 \end{align*}$

Since $\displaystyle \begin{align*} -490\,z = 2\,940 \implies z = -6 \end{align*}$, then

$\displaystyle \begin{align*} 187\,y + 204 \, \left( -6 \right) &= 272 \\ 187\,y - 1\,224 &= 272 \\ 187\,y &= 1\,496 \\ y &= 8 \end{align*}$

and

$\displaystyle \begin{align*} 5\,x - 2\,\left( 8 \right) + \left( -6 \right) &= 3 \\ 5\,x - 22 &= 3 \\ 5\,x &= 25 \\ x &= 5 \end{align*}$

So the solution is $\displaystyle \begin{align*} \left( x , y , z \right) = \left( 5, 8, -6 \right) \end{align*}$.
Correct. The next step would be to write it in form of matrices. 'Gaussian elimination' would be a suitable search key.
 
  • Like
Likes Astronuc and Greg Bernhardt
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
11K
  • · Replies 1 ·
Replies
1
Views
10K