MHB Mason's question via Facebook about solving a system of equations

AI Thread Summary
The discussion revolves around solving a system of equations involving three variables: x, y, and z. The equations are manipulated using techniques such as finding the least common multiple (LCM) of coefficients, multiplying equations to align them, and applying row operations to simplify the system. The final solution obtained through these methods is x = 5, y = 8, and z = -6. The conversation also suggests that representing the solution in matrix form and using Gaussian elimination could be beneficial for further analysis. The solution process highlights the effectiveness of systematic approaches in solving linear equations.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Solve the following system for $\displaystyle \begin{align*} x, y, z \end{align*}$:

$\displaystyle \begin{align*} 5\,x - 2\,y + z &= 3 \\ 3\,x + y + 3\,z &= 5 \\ 6\,x + y - 4\,z &= 62 \end{align*}$

The LCM of the $\displaystyle \begin{align*} x \end{align*}$ coefficients is 30, so multiplying the first equation by 6, the second by 10 and the third by 5 gives

$\displaystyle \begin{align*} 30\,x - 12\,y + 6\,z &= 18 \\ 30\,x + 10\,y + 30\,z &= 50 \\ 30\,x + 5\,y - 20\,z &= 310 \end{align*}$

Applying R2 - R1 to R2 and R3 - R1 to R3 we have

$\displaystyle \begin{align*} 30\,x + 12\,y - 6\,z &= 18 \\ 22\,y + 24\,z &= 32 \\ 17\,y - 26\,z &= 292 \end{align*}$

Dividing the second equation by 2 gives

$\displaystyle \begin{align*} 30\,x + 12\,y - 6\,z &= 18 \\ 11\,y + 12\,z &= 16 \\ 17\,y - 26 \,z &= 292 \end{align*}$

The LCM of the y coefficients in rows 2 and 3 is 187, so multiplying the second equation by 17 and the third equation by 11 we have

$\displaystyle \begin{align*} 30\,x + 12\,y - 6\,z &= 18 \\ 187\,y + 204\,z &= 272 \\ 187\,y - 286\,z &= 3\,212 \end{align*}$

Applying R3 - R2 to R2 we have

$\displaystyle \begin{align*} 30\,x + 12\,y - 6\,z &= 18 \\ 187\,y + 204\,z &= 272 \\ - 490\,z &= 2\,940 \end{align*}$

Since $\displaystyle \begin{align*} -490\,z = 2\,940 \implies z = -6 \end{align*}$, then

$\displaystyle \begin{align*} 187\,y + 204 \, \left( -6 \right) &= 272 \\ 187\,y - 1\,224 &= 272 \\ 187\,y &= 1\,496 \\ y &= 8 \end{align*}$

and

$\displaystyle \begin{align*} 5\,x - 2\,\left( 8 \right) + \left( -6 \right) &= 3 \\ 5\,x - 22 &= 3 \\ 5\,x &= 25 \\ x &= 5 \end{align*}$

So the solution is $\displaystyle \begin{align*} \left( x , y , z \right) = \left( 5, 8, -6 \right) \end{align*}$.
 
Mathematics news on Phys.org
Prove It said:
The LCM of the $\displaystyle \begin{align*} x \end{align*}$ coefficients is 30, so multiplying the first equation by 6, the second by 10 and the third by 5 gives

$\displaystyle \begin{align*} 30\,x - 12\,y + 6\,z &= 18 \\ 30\,x + 10\,y + 30\,z &= 50 \\ 30\,x + 5\,y - 20\,z &= 310 \end{align*}$

Applying R2 - R1 to R2 and R3 - R1 to R3 we have

$\displaystyle \begin{align*} 30\,x + 12\,y - 6\,z &= 18 \\ 22\,y + 24\,z &= 32 \\ 17\,y - 26\,z &= 292 \end{align*}$

Dividing the second equation by 2 gives

$\displaystyle \begin{align*} 30\,x + 12\,y - 6\,z &= 18 \\ 11\,y + 12\,z &= 16 \\ 17\,y - 26 \,z &= 292 \end{align*}$

The LCM of the y coefficients in rows 2 and 3 is 187, so multiplying the second equation by 17 and the third equation by 11 we have

$\displaystyle \begin{align*} 30\,x + 12\,y - 6\,z &= 18 \\ 187\,y + 204\,z &= 272 \\ 187\,y - 286\,z &= 3\,212 \end{align*}$

Applying R3 - R2 to R2 we have

$\displaystyle \begin{align*} 30\,x + 12\,y - 6\,z &= 18 \\ 187\,y + 204\,z &= 272 \\ - 490\,z &= 2\,940 \end{align*}$

Since $\displaystyle \begin{align*} -490\,z = 2\,940 \implies z = -6 \end{align*}$, then

$\displaystyle \begin{align*} 187\,y + 204 \, \left( -6 \right) &= 272 \\ 187\,y - 1\,224 &= 272 \\ 187\,y &= 1\,496 \\ y &= 8 \end{align*}$

and

$\displaystyle \begin{align*} 5\,x - 2\,\left( 8 \right) + \left( -6 \right) &= 3 \\ 5\,x - 22 &= 3 \\ 5\,x &= 25 \\ x &= 5 \end{align*}$

So the solution is $\displaystyle \begin{align*} \left( x , y , z \right) = \left( 5, 8, -6 \right) \end{align*}$.
Correct. The next step would be to write it in form of matrices. 'Gaussian elimination' would be a suitable search key.
 
  • Like
Likes Astronuc and Greg Bernhardt
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
1
Views
11K
Replies
1
Views
11K
Replies
4
Views
11K
Replies
1
Views
10K
Replies
1
Views
10K
Replies
4
Views
11K
Back
Top