MHB Mason's question via Facebook about solving a system of equations

Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Solve the following system for $\displaystyle \begin{align*} x, y, z \end{align*}$:

$\displaystyle \begin{align*} 5\,x - 2\,y + z &= 3 \\ 3\,x + y + 3\,z &= 5 \\ 6\,x + y - 4\,z &= 62 \end{align*}$

The LCM of the $\displaystyle \begin{align*} x \end{align*}$ coefficients is 30, so multiplying the first equation by 6, the second by 10 and the third by 5 gives

$\displaystyle \begin{align*} 30\,x - 12\,y + 6\,z &= 18 \\ 30\,x + 10\,y + 30\,z &= 50 \\ 30\,x + 5\,y - 20\,z &= 310 \end{align*}$

Applying R2 - R1 to R2 and R3 - R1 to R3 we have

$\displaystyle \begin{align*} 30\,x + 12\,y - 6\,z &= 18 \\ 22\,y + 24\,z &= 32 \\ 17\,y - 26\,z &= 292 \end{align*}$

Dividing the second equation by 2 gives

$\displaystyle \begin{align*} 30\,x + 12\,y - 6\,z &= 18 \\ 11\,y + 12\,z &= 16 \\ 17\,y - 26 \,z &= 292 \end{align*}$

The LCM of the y coefficients in rows 2 and 3 is 187, so multiplying the second equation by 17 and the third equation by 11 we have

$\displaystyle \begin{align*} 30\,x + 12\,y - 6\,z &= 18 \\ 187\,y + 204\,z &= 272 \\ 187\,y - 286\,z &= 3\,212 \end{align*}$

Applying R3 - R2 to R2 we have

$\displaystyle \begin{align*} 30\,x + 12\,y - 6\,z &= 18 \\ 187\,y + 204\,z &= 272 \\ - 490\,z &= 2\,940 \end{align*}$

Since $\displaystyle \begin{align*} -490\,z = 2\,940 \implies z = -6 \end{align*}$, then

$\displaystyle \begin{align*} 187\,y + 204 \, \left( -6 \right) &= 272 \\ 187\,y - 1\,224 &= 272 \\ 187\,y &= 1\,496 \\ y &= 8 \end{align*}$

and

$\displaystyle \begin{align*} 5\,x - 2\,\left( 8 \right) + \left( -6 \right) &= 3 \\ 5\,x - 22 &= 3 \\ 5\,x &= 25 \\ x &= 5 \end{align*}$

So the solution is $\displaystyle \begin{align*} \left( x , y , z \right) = \left( 5, 8, -6 \right) \end{align*}$.
 
Mathematics news on Phys.org
Prove It said:
The LCM of the $\displaystyle \begin{align*} x \end{align*}$ coefficients is 30, so multiplying the first equation by 6, the second by 10 and the third by 5 gives

$\displaystyle \begin{align*} 30\,x - 12\,y + 6\,z &= 18 \\ 30\,x + 10\,y + 30\,z &= 50 \\ 30\,x + 5\,y - 20\,z &= 310 \end{align*}$

Applying R2 - R1 to R2 and R3 - R1 to R3 we have

$\displaystyle \begin{align*} 30\,x + 12\,y - 6\,z &= 18 \\ 22\,y + 24\,z &= 32 \\ 17\,y - 26\,z &= 292 \end{align*}$

Dividing the second equation by 2 gives

$\displaystyle \begin{align*} 30\,x + 12\,y - 6\,z &= 18 \\ 11\,y + 12\,z &= 16 \\ 17\,y - 26 \,z &= 292 \end{align*}$

The LCM of the y coefficients in rows 2 and 3 is 187, so multiplying the second equation by 17 and the third equation by 11 we have

$\displaystyle \begin{align*} 30\,x + 12\,y - 6\,z &= 18 \\ 187\,y + 204\,z &= 272 \\ 187\,y - 286\,z &= 3\,212 \end{align*}$

Applying R3 - R2 to R2 we have

$\displaystyle \begin{align*} 30\,x + 12\,y - 6\,z &= 18 \\ 187\,y + 204\,z &= 272 \\ - 490\,z &= 2\,940 \end{align*}$

Since $\displaystyle \begin{align*} -490\,z = 2\,940 \implies z = -6 \end{align*}$, then

$\displaystyle \begin{align*} 187\,y + 204 \, \left( -6 \right) &= 272 \\ 187\,y - 1\,224 &= 272 \\ 187\,y &= 1\,496 \\ y &= 8 \end{align*}$

and

$\displaystyle \begin{align*} 5\,x - 2\,\left( 8 \right) + \left( -6 \right) &= 3 \\ 5\,x - 22 &= 3 \\ 5\,x &= 25 \\ x &= 5 \end{align*}$

So the solution is $\displaystyle \begin{align*} \left( x , y , z \right) = \left( 5, 8, -6 \right) \end{align*}$.
Correct. The next step would be to write it in form of matrices. 'Gaussian elimination' would be a suitable search key.
 
  • Like
Likes Astronuc and Greg Bernhardt
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
1
Views
11K
Replies
1
Views
11K
Replies
4
Views
11K
Replies
1
Views
10K
Replies
1
Views
10K
Replies
4
Views
11K
Back
Top