Mass dropped with preloaded spring

  • Thread starter Thread starter carb
  • Start date Start date
  • Tags Tags
    Mass Spring
AI Thread Summary
The discussion centers on calculating the additional compression (xadd) of a preloaded spring when a mass is dropped from a height (h). It is clarified that the final compressed length of the spring differs with and without preload, and that xadd is always greater than zero regardless of the drop height, even at minimal heights. The participants share energy conservation equations to derive relationships between initial and final energies, leading to a quadratic equation for xadd. A maximum height (h_max) of 0.0307 meters is calculated to ensure the potential energy is fully absorbed by the spring without causing impact. The conversation emphasizes the importance of understanding the mechanics involved in spring compression under dynamic conditions.
carb
Messages
9
Reaction score
0
Hello everybody,
I'm trying to figure out how to calculate xadd, the additional compression of a preloaded spring (initially compressed of xp) on which a mass is dropped from a height "h".
I also wonder :
- if the final compressed spring length is the same with or without preload ?
- if the spring receive an additional compression xadd >0 whatever the drop height ? (even at h=0.001 ?)

I have some remembering about my academic studies (Energy conservation laws applied to spring) but I feel quite uncomfortable since I did not practice for a long time. Thanks a lot for any kind of help.

before_drop.png
lowest_height.png
 
Physics news on Phys.org
carb said:
the final compressed spring length is the same with or without preload ?
It is not the same.
carb said:
the spring receive an additional compression xadd >0 whatever the drop height ? (even at h=0.001 ?)
Yes it does.

Consider the energy of the cylinder, just before the frame hits the ground:
E1 = m*g*(L-xp) + ½*m*v2
Now consider the energy, E2 , when the cylinder has been brought to a halt ( last figure ).

The difference in energies: ( E1 - E2 ) must have been absorbed by the spring, so:

( E1 - E2 ) = ∫xadd Fspring(x) dx
 
Last edited:
Hello Hesch !
Thanks to your help I did it this way :
E1 (just before hit) = m*g*(L-xp) + ½*m*v2 + ½*k*xp2
with v = √(2*g*h)
E2 (just before rebund phase) = m*g*(L -xp -xadd) + 0 + ½*k*(xp + xadd)2

Then E1 = E2 led me to this factorisation form (xadd as variable) :
½*k*xadd2 + (k*xp - m*g)*xadd - m*g*h = 0

but I actually changed my mind about the study result and decided to get xadd as an input and to find the corresponding height ("how high can I drop the cylinder to get exactly 100% of potential energy absorbed by the spring").

==> h = [½*k*xadd2 + (k*xp - m*g)*xadd] / (m*g)

k: 10 000N/m
m: 1kg
g: 9.81 m/s2

Spring
L: 0.010 m
xp: 0.003 m
xadd_max: 0.006 m (considering a minimal spring contiguous wire height of 0.001 m)

calculation led to h_max = 0.0307m (max height avoiding potential energy causing impact on the ground)

to confirm the results, here is what I got using a mechanism simulation software :
(velocity as initial condition of the dynamic study (just before hit) : v = √(2*g*h) = 776.067 mm/s)

Good to see that lowest reached position is 1mm according to minimal spring height used is previous calculation (contiguous wire)
results.png


I hope the results are not accidentally good :nb).
Thanks again Hesch ! :wink:
 
carb said:
but I actually changed my mind about the study result and decided to get xadd as an input and to find the corresponding height ("how high can I drop the cylinder to get exactly 100% of potential energy absorbed by the spring").
What ?? So you gave up finding an algebraic solution, and started playing with numbers instead ?

Well, I calculated that

E1 = m*g*(L-xp) + ½*m*2*g*h = m*g*(h+L-xp)
E2 = m*g*(L-xp-xadd)

E1-E2 = m*g*(h+xadd)

Espring = k*(xp*xadd + ½*xadd2 )

More calculations leads to:

½*xadd2 + (xp-1)*xadd - h*m*g/k = 0 ( solve xadd )

I'm not sure if this is correct, but anyway it makes sense that the calculations ends up in a 2. order equation, giving two solutions:
One when the box is dropped with the spring below the mass, the other when the box is dropped upside down. :smile:
 
Hello Hesch,
I need to re-do your calculations now ;)
Thank you for your help and explanation !
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...
Back
Top