Mass of Jupiter using as Many moons as Possible

AI Thread Summary
Kepler's law can be used to calculate the mass of Jupiter by considering its moons, but modifying the law for more than a binary system may not yield significant improvements in accuracy due to the minimal impact of additional moons. For greater precision, various analytic methods exist, and the resonance between Jupiter's largest moons—Io, Europa, and Ganymede—should be factored in, as they influence each other's orbits. The resonant interactions help maintain their orbital paths, which could affect calculations of Jupiter's mass. While using just one moon can provide a good estimate, incorporating the resonant dynamics of multiple moons may refine the results further. Ultimately, the choice of method and desired accuracy will dictate the approach taken.
walkera
Messages
2
Reaction score
0
To calculate the mass of a binary system, one can use keplers law. P^2= (4*(pi)^2*a^3)/(G*(m1+m2)) To get a more accurate mass I must take into account as many moons as possibe for jupiter. Is it possible to change kepler's law alittle to make it accommodate more than a binary system?

ty
 
Astronomy news on Phys.org
Welcome to Physics Forums walkera!

First, I'm not sure why you'd want to tinker with Kepler's law for Jupiter (or the solar system, or anything in the solar system except Pluto/Charon and Earth/Moon ... the deviation caused by the other moons will be extremely small.

Second, if you do want to get greater accuracy, there are many different methods. From your post it seems you are interested in analytic methods (different formulae) rather than digital ones (e.g. a digital orrery, or a simulation on a PC); there are whole shelves in libraries devoted to various approximations and methods (look up 'celestial mechanics').

Perhaps you could consider the level of accuracy you want? Or the number of pages of formulae you could tolerate?
 
Using any 1 moon is going to get you a very good answer. But if you want to venture further to the right of the decimal point, you have to consider that Io, Europa and Ganymede are locked in resonance with each other. I believe it's 1:2:3 or 1:2:4. And Callisto, spiraling outward will eventually get locked into resonance as well.

If all were instantly converted to massless particles, they'd continue to orbit as-is for a little while but soon would diverge from their real paths as the resonant forces would cease to exist. With the resonance, when anyone of them moves too fast or too slow to keep the resonance, subtle forces from the other 2 shepard them back into place which will have a small effect when trying to compute Jupiter's mass from their periods.

At least I think that's what's going on :shy:
 
TL;DR Summary: In 3 years, the Square Kilometre Array (SKA) telescope (or rather, a system of telescopes) should be put into operation. In case of failure to detect alien signals, it will further expand the radius of the so-called silence (or rather, radio silence) of the Universe. Is there any sense in this or is blissful ignorance better? In 3 years, the Square Kilometre Array (SKA) telescope (or rather, a system of telescopes) should be put into operation. In case of failure to detect...
Thread 'Could gamma-ray bursts have an intragalactic origin?'
This is indirectly evidenced by a map of the distribution of gamma-ray bursts in the night sky, made in the form of an elongated globe. And also the weakening of gamma radiation by the disk and the center of the Milky Way, which leads to anisotropy in the possibilities of observing gamma-ray bursts. My line of reasoning is as follows: 1. Gamma radiation should be absorbed to some extent by dust and other components of the interstellar medium. As a result, with an extragalactic origin, fewer...
Both have short pulses of emission and a wide spectral bandwidth, covering a wide variety of frequencies: "Fast Radio Bursts (FRBs) are detected over a wide range of radio frequencies, including frequencies around 1400 MHz, but have also been detected at lower frequencies, particularly in the 400–800 MHz range. Russian astronomers recently detected a powerful burst at 111 MHz, expanding our understanding of the FRB range. Frequency Ranges: 1400 MHz: Many of the known FRBs have been detected...
Back
Top