Mass Reconstruction: What Does It Mean?

  • Thread starter Thread starter godtripp
  • Start date Start date
  • Tags Tags
    Mass
godtripp
Messages
53
Reaction score
0
What is it? I always hear it and never know what exactly it means to "reconstruct" mass.
 
Physics news on Phys.org
Using energy and momentum conservation, compute the 4-vector of the particle, and it's Lorentz square is the square of the mass.

Say for instance you detect the decay products of the particle, add up all 4-vectors, the square of the mass is the difference between (1) the square of the total energy of the decay products and (2) the square of the total momentum carried by the decay products.

You could also do it if by any chance you can assume the particle is the only one missing in a certain balance, and computing the missing 4-vector.
 
sorry, I'm going to have to verify in layman's terms.. this is way above my current education in physics. (sophmore year undergrad)

So what you're doing is analyzing the decay products, summing up their total energies to trace back the energy , and thus the masses, of their parent particles?
 
godtripp said:
summing up their total energies to trace back the energy

And the momentum.

For any particle:

(mc^2)^2 = E^2 - ({\vec p }c)^2

If the particle then decays into a collection of other particles, the total energy and the total momentum are both conserved, so

(mc^2)^2 = (\Sigma E_i)^2 - (\Sigma {\vec p_i} c)^2

In these equations, m is the "invariant mass", also known as "rest mass"; not the "relativistic mass" which you find in many introductory treatments of relativity.
 
Last edited:
Thread 'Why is there such a difference between the total cross-section data? (simulation vs. experiment)'
Well, I'm simulating a neutron-proton scattering phase shift. The equation that I solve numerically is the Phase function method and is $$ \frac{d}{dr}[\delta_{i+1}] = \frac{2\mu}{\hbar^2}\frac{V(r)}{k^2}\sin(kr + \delta_i)$$ ##\delta_i## is the phase shift for triplet and singlet state, ##\mu## is the reduced mass for neutron-proton, ##k=\sqrt{2\mu E_{cm}/\hbar^2}## is the wave number and ##V(r)## is the potential of interaction like Yukawa, Wood-Saxon, Square well potential, etc. I first...
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...
Back
Top