Masses connected by string/rod

  • Thread starter Thread starter dinmore
  • Start date Start date
AI Thread Summary
The discussion revolves around simulating two point masses connected by a massless string or rod for a game. The main challenge is calculating the force exerted on each mass by the string or rod, particularly when one mass is set in motion. The conversation highlights that while the rod scenario is simpler due to fixed interobject distance, the string introduces complexity since the distance can change. It is noted that forces act along the string, and the second law of Newton can be applied to derive the necessary calculations. Ultimately, the user decides to implement the string model for its dynamic behavior, despite initial considerations for using a rod.
dinmore
Messages
3
Reaction score
0
Hi,

I'm making a game and could do with a hand working out how to simulate the main element of it. I'm sure I should be able to work this out, it seems relativly simple, but I'm so out of practice the solutions eluding me.

I need to simulate two point masses connected by a massless string or rod (it doesn't matter which; so whichever's easiest). I'm fine with the basics of moving them about but can't figure out how to calculate the force exerted on each mass by the string/rod. I guess it'd be derived from the velocities of the opposite mass but further than that I'm stuck.

Can anyone help?
 
Physics news on Phys.org
actually the force acting on the mass can be calculated from a movement of the attached mass. That is not exactly useless because you can define the movement. In the case of the rod the situation is fairly simple- the 3D translation plus rotation with respect to the center of mass; The interobject distance is fixed.

For a string the situation is slightly mor complicated, because the interobject distance is not fixed. The force should, however, act along the string, so we can use the second Newton's law.

Let's consider , for example, a case when two masses are at rest and one mass gets an impuls in an arbitrary direction. It will move freely until the distance between the masses wil be equal to the string length. Then the impulse perpendicular to the string will remain unchanged (no force is acting in that direction). As to the implulse along the string, we can consider this as an impact along the string, so we can find the impulses after the impact. It will be also a good idea to use the inertial system where the total impulse is zero, because it should remain zero unless an external force is acting on our objects.
 
Ah, of course. I was forgetting all about the system having a centre of mass, silly me. Think I'll use the rod version for simplicity (not just calculations - drawing a slack string right would be nasty), maybe I'll do it with string in the next version.

Now all I've got to do is dig out the angular motion equations.

Thanks for that.
 
Heh. Actually I think it's easier to work out what's going on with string. Think I'll go with that instead.
 
Hello! Let's say I have a cavity resonant at 10 GHz with a Q factor of 1000. Given the Lorentzian shape of the cavity, I can also drive the cavity at, say 100 MHz. Of course the response will be very very weak, but non-zero given that the Loretzian shape never really reaches zero. I am trying to understand how are the magnetic and electric field distributions of the field at 100 MHz relative to the ones at 10 GHz? In particular, if inside the cavity I have some structure, such as 2 plates...
Back
Top