Massless Particles: Force Bearing & Propagation Speeds

geordief
Messages
224
Reaction score
50
It looks to me like all the massless particles so far discovered may be force bearing particles, there being 3 of them.

Am I right?

If so can it be said that forces propagate at the speed of light whilst what we might think of a tangible particles cannot?

I did post this question on another forum

http://www.thephysicsforum.com/special-general-relativity/7080-massless-particles-inertial-frame-dependent-speed-invariance.html

but didn't get an answer to my last post there...
 
Last edited by a moderator:
Physics news on Phys.org
geordief said:
It looks to me like all the massless particles so far discovered may be force bearing particles, there being 3 of them.

Am I right?

Sort of. It's true that, in our current universe, the only particles that are massless (photons, gluons, and gravitons--the last one has not been detected but is believed to exist) are force carriers. However, in the early universe, that was not the case: all of the Standard Model particles were massless. As the universe cooled, a phase transition took place that caused most of the Standard Model particles to acquire mass through their interaction with the Higgs field. So there is no fundamental requirement that massless particles must be force carriers; it just happens to be that way in our universe because of how it evolved.

geordief said:
can it be said that forces propagate at the speed of light whilst what we might think of a tangible particles cannot?

No. First, there are force carriers in our current universe that are not massless--the weak bosons (W+, W-, and Z). Second, as above, what we think of as "tangible particles" were massless in the early universe.
 
thanks a lot.
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
Back
Top