harryjobs said:
I don't know what is a convergent series.what should I refer to.
Any good text with "calculus" in the title, or any text with "analysis" in the title. The idea is pretty simple. A sequence of real numbers is said to be
convergent if there's a real number ##x## such that every open interval that contains x also contains all but a finite number of terms of the sequence. That number x is then called the
limit of the sequence.
Explanation of the terminology: If the sequence is ##x_1,x_2,\dots##, the ##x_i## with ##i## a positive integer are called the
terms of the sequence. An
open interval is an interval that doesn't include the endpoints, e.g. the set of all real numbers x such that 0<x<1. The set of all real numbers x such that 0<x≤1 is also an interval, but not an open interval.
For example, the sequence ##1,1/2,1/3,\dots## is convergent because the number 0 has this funny property: For each open interval E that contains 0, there's a positive integer N such that 1/n is in E for all n≥N.
Now consider a sequence ##x_1,x_2,\dots##. For each positive integer ##n##, the number ##s_n=\sum_{k=1}^n x_k## is called the ##n##th partial sum of the sequence. If the sequence of partial sums (i.e. ##s_1,s_2,\dots##) is convergent, we denote its limit by ##\sum_{k=1}^\infty x_k##.
So the "sum" of infinitely many numbers isn't something trivial. It has to be
defined. The definition says that we first have to arrange the numbers in a sequence. Then we have to find its limit of partial sums, if it has one at all. Since the "sum" is defined this way, it's not particularly remarkable that it may depend on how you arrange the terms that you want to add up in a sequence.