Mathematical state of Path Integral?

"pi"mp
Messages
129
Reaction score
1
So I've just recently started learning path integral methods in QFT and string theory, and I've heard from numerous sources that the path integral (specifically fermionic path integrals, perhaps?) are objects which are not at all on solid mathematical ground. The feeling I get is that perhaps they're well enough understood for the kind of specific situations in physics, but lack generality. It seems Feynman discovered some phenomenal new mathematical landscape that no mathematicians had yet seen, much less understood.

I'm wondering whether this is all accurate. And moreover, what about random surfaces in string theory? It seems there is very shaky mathematical rigour for integrating over topologies and embeddings.
 
Physics news on Phys.org
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top