Matrix and transformation problem

adjacent
Gold Member
Messages
1,552
Reaction score
62
Let there be a triangle with coordinates A(2,2) , B(5,2) and C(5,4)
I have learned two ways to shear an object(x-axis invariant) in the Cartesian coordinate system.
The first way is to find the coordinate vector of a point and multiply the y-component of the vector by the shear factor(2)(Don't change the value) and replace the x-component with it.

The second way is to use the transformation matrix and multiply it with the coordinate matrix.
So the transformation matrix is ##\begin{pmatrix}1 & 2\\ 0 & 1 \end{pmatrix}## and the cordinate matrix: ##\begin{pmatrix}2 & 5 & 5\\ 2 & 2 & 4 \end{pmatrix}## and the result is :
$$\begin{pmatrix}6 & 9 & 13\\ 2 & 2 & 4 \end{pmatrix}$$

This gives the same answer as the first method.However,the first method is easy to understand.
I realized that the matrix method does the same thing.It leaves the y-components as it is and add the ##\text{Shear factor} \times \text{Y-component}## to the x-component.

So when the matrix theory(or whatever) was made,that person must have considered these.The multiplication rule:Row and column made this transformation matrices useful.
My teacher asked to replace the ##0## with the shear factor.
I was wondering how did someone find this rule about replacing the zero?By guessing?
So can I make a transformation matrix which would translate,reflect,rotate,enlarge,stretch and shear it at the same time?
My main question here is how to make a transformation matrix which would transform the object in the way I like.
 
Mathematics news on Phys.org
Anyone?:mad:
 
adjacent said:
I was wondering how did someone find this rule about replacing the zero?By guessing?
So can I make a transformation matrix which would translate,reflect,rotate,enlarge,stretch and shear it at the same time?
My main question here is how to make a transformation matrix which would transform the object in the way I like.
If you have a 3 dimensional space, then you can reflect, rotate, enlarge, stretch, and shear by multiplying by a 3 by 3 matrix. But you cannot translate by multiplying by a matrix because any matrix times (0, 0, 0) would give (0, 0, 0) and translating will move (0, 0, 0) to some other point.

What you can do is use "projective space". We represent the point (x, y, z) by the array (x, y, z, 1) and include the "equivalence relation" that (ax, ay, az, a) represents the same point as (x, y, z, 1). That is, any time the last number is NOT "1", divide through by it. That way we could represent the transation by the vector (a, b, c) as a matrix multiplication:
\begin{bmatrix}1 & 0 & 0 & a \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1 \end{bmatrix}\begin{bmatrix}x \\ y \\ z \\ 1\end{bmatrix}= \begin{bmatrix}x+ a \\ y+ b \\ z+ c \\ 1\end{bmatrix}

Reflection, rotation, enlarging, stretching, and shearing would be the usual 3 by 3 matrix with the fourth row and column all 0s. And you would form a matrix that combines "reflecting, rotating, enlarging, translating, stretching, and shearing by forming the matrix for each of those and multiplying the matrices.
 
Last edited by a moderator:
Your latex is broken.
I have not learned matrix transformation in 3-d space yet :frown:
 
adjacent said:
Your latex is broken.
It's fixed now.
adjacent said:
I have not learned matrix transformation in 3-d space yet :frown:
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
4
Views
1K
Replies
42
Views
4K
Replies
5
Views
2K
Replies
16
Views
4K
Replies
9
Views
3K
Replies
10
Views
2K
Back
Top