MHB Matrix Exponential: Find Jordan Form & Compute eA

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Exponential Matrix
AI Thread Summary
The discussion focuses on finding the Jordan form of the matrix A and computing the exponential matrix eA. The eigenvalues of matrix A are identified as -1 (simple) and 2 (double), leading to the canonical Jordan form J. A basis corresponding to the Jordan form is established, with vectors derived from the kernel calculations. The transition matrix P is constructed to relate A and J, enabling the computation of eA using the formula eA = PeJ P^-1. The final result for the exponential matrix is presented as a specific 3x3 matrix involving exponential terms.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
I quote a question from Yahoo! Answers

Consider the following Matrix:
A =
[ 1 -1 0
1 3 0
4 6 -1 ]

(a) Find a Jordan form of the matrix, as well as a basis that corresponds to that Jordan form.
(b) Compute the exponential matrix eA.

I have given a link to the topic there so the OP can see my response.
 
Mathematics news on Phys.org
$(a)$ The eigenvalues of $A=\begin{bmatrix}{1}&{-1}&{\;\;0}\\{1}&{\;\;3}&{\;\;0}\\{4}&{\;\;6}&{-1}\end{bmatrix}$ are: $$\det (A-\lambda I)=(-1-\lambda)(\lambda -2)^2=0\Leftrightarrow \lambda=-1\mbox{ (simple) }\vee \;\lambda=2\mbox{ (double)}$$ We have $\dim\ker (A+I)=1$ (simple eigenvalue) and $\dim \ker (A-2I)=3-\mbox{rank} (A-2I)=3-2=1$. So the canonical form of Jordan is $$J= \begin{bmatrix} {-1}&{0}&{0}\\{0}&{2}&{1}\\{0}&{0}&{2}\end{bmatrix} $$ A basis for $\ker (A+I)$ is $\{v=(0,0,1)^T\}$. Now, we need two linearly independent vectors $e_1,e_2$ such that $(A-2I)e_1=0$ and $(A-2I)e_2=e_1$. We easily find $e_1=(-3,3,2)^T$ and $e_2=(8,-5,0)^T$. As a consequence, the transition matrix $P$ satisfying $P^{-1}AP=J$ is $$P=[v\;\;e_1\;\;e_2]=\begin{bmatrix}{0}&{-3}&{\;\;8}\\{0}&{\;\;3}&{-5}\\{1}&{\;\;2}&{\;\;0}\end{bmatrix}$$

$(b)\;\;e^{A}=Pe^{J}P^{-1}=P\;\begin{bmatrix}{e^{-1}}&{0}&{0}\\{0}&{e^{2}}&{e^{2}}\\{0}&{0}&{e^{2}} \end{bmatrix}\;P^{-1}=\ldots=\begin{bmatrix}{e}&{e^{-1}}&{1}\\{e}&{e^3}&{1}\\{e^4}&{e^6}&{e^{-1}} \end{bmatrix}$
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Back
Top