MHB Matrix multiplication simplified to Vector multiplication

CyanBC
Messages
2
Reaction score
0
Hello, I'm not sure where to put this. I have spent the last week (14+ hour days) editing some code I have for selecting representative spectra for a remote sensing masters thesis I'm working on. The program is very-very slow, and I've been trying to speed it up as much as possible by NOT performing any conversions that are unnecessary. Which leads me to the problem I've been struggling with for the last 10 hours.

I'll use a simple example:

I have a vector (V1)
[0,1,2,3]
Which I reform into a matrix (M1)
[0,1
2,3]

and perform matrix multiplication on itself, M1*M1
which returns a matrix
[2,3
6,11]
from which I take the sum total of all items in the matrix. So the desired answer is = 22

Is there any way I can do this directly with the original vector (V1), without having to convert the original vector to a matrix? I know conversion is the easiest way - but not the most computationally efficient. And I'm nor so good at the maths.
 
Mathematics news on Phys.org
CyanBC said:
Hello, I'm not sure where to put this. I have spent the last week (14+ hour days) editing some code I have for selecting representative spectra for a remote sensing masters thesis I'm working on. The program is very-very slow, and I've been trying to speed it up as much as possible by NOT performing any conversions that are unnecessary. Which leads me to the problem I've been struggling with for the last 10 hours.

I'll use a simple example:

I have a vector (V1)
[0,1,2,3]
Which I reform into a matrix (M1)
[0,1
2,3]

and perform matrix multiplication on itself, M1*M1
which returns a matrix
[2,3
6,11]
from which I take the sum total of all items in the matrix. So the desired answer is = 22

Is there any way I can do this directly with the original vector (V1), without having to convert the original vector to a matrix? I know conversion is the easiest way - but not the most computationally efficient. And I'm nor so good at the maths.
Hi Cyan and welcome to MHB! Suppose you do that same sequence of calculations algebraically, starting with a vector $[a,b,c,d].$ Then the matrix is $\begin{bmatrix} a&b \\c&d \end{bmatrix}.$ When you square it you get $\begin{bmatrix} a^2 + bc&b(a+d) \\c(a+d)&bc +d^2 \end{bmatrix}.$ The sum of the elements is $\Sigma = a^2 + 2bc + d^2 + (b+c)(a+d).$ With a little bit of algebraic manipulation you can write that as $\Sigma = (a+d)(a+b+c+d) - 2(ad-bc).$

Presumably you can write a little subroutine to input $[a,b,c,d]$ and get out $\Sigma.$ That ought to be a bit faster than going via a matrix computation.
 
Thanks for illuminating that for me. Now that I see it, I think the original method may be more efficient.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top