LaTeX Matter Types in Different Spatial Geometries

  • Thread starter Thread starter latentcorpse
  • Start date Start date
  • Tags Tags
    Matter
AI Thread Summary
The discussion centers around improving the presentation of a LaTeX table comparing different types of matter in cosmological models, specifically "Dust" and "Radiation," across various spatial geometries (3-sphere, flat, and 3-hyperboloid). Key points include addressing formatting issues such as an incomplete line and unwanted extra lines in the table. Suggestions for enhancement include removing unnecessary line breaks and using the `booktabs` package to avoid vertical lines, which are considered poor practice in LaTeX tables. Additionally, advice is given on vertically centering the "Spatial Geometry" label by using the `\multirow` command. The conversation also touches on unrelated matrix operations, indicating a potential digression from the main topic. Overall, the focus remains on refining the table's layout for a more professional appearance.
latentcorpse
Messages
1,411
Reaction score
0
hi i made the following table

<br /> \begin{center}<br /> \begin{tabular}{l|l|l}<br /> \hline<br /> &amp; \multicolumn{2}{c}{TYPE OF MATTER} \\<br /> \cline{2-3}<br /> &amp; ``Dust&#039;&#039; &amp; ``Radiation&#039;&#039; \\<br /> SPATIAL GEOMETRY &amp; $P=0$ &amp; $P=\frac{1}{3} \rho$ \\<br /> \hline \\<br /> \multirow{2}{*}{3-sphere, $K=1$} &amp; $a=\frac{1}{2}C \left( 1 - \cos{\eta} \right) $ &amp; $a=\sqrt{C&#039;} \left( 1- \left( 1 - \frac{\tau}{\sqrt{C&#039;}} \right)^2 \right)^{\frac{1}{2}}$ \\<br /> &amp; $\tau=\frac{1}{2}C \left( \eta - \sin{\eta} \right)$ &amp; \\<br /> \hline<br /> Flat, $k=0$ &amp; $a= \left( \frac{9C}{4} \right)^{\frac{1}{3}} \tau^{\frac{2}{3}}$ &amp; $a=\left( 4C&#039; \right)^{\frac{1}{4}} \tau^{\frac{1}{2}}$ \\<br /> \hline<br /> \multirow{2}{*}{3-hyperboloid, $k=-1$} &amp; $a=\frac{1}{2} C \left( \cosh{\eta} - 1 \right)$ &amp; $a=\sqrt{C&#039;} \left( \left( 1 + \frac{\tau}{\sqrt{C&#039;}} \right)^2 -1 \right)^{\frac{1}{2}}$ \\<br /> &amp; $\tau=\frac{1}{2}C \left( \sinh{\eta} - \eta \right)$ &amp; \\<br /> \hline<br /> \end{tabular}<br /> \end{center}<br />

with teh following code:

\begin{center}
\begin{tabular}{l|l|l}
\hline
& \multicolumn{2}{c}{TYPE OF MATTER} \\
\cline{2-3}
& ``Dust'' & ``Radiation'' \\
SPATIAL GEOMETRY & $P=0$ & $P=\frac{1}{3} \rho$ \\
\hline \\
\multirow{2}{*}{3-sphere, $K=1$} & $a=\frac{1}{2}C \left( 1 - \cos{\eta} \right) $ & $a=\sqrt{C'} \left( 1- \left( 1 - \frac{\tau}{\sqrt{C'}} \right)^2 \right)^{\frac{1}{2}}$ \\
& $\tau=\frac{1}{2}C \left( \eta - \sin{\eta} \right)$ & \\
\hline
Flat, $k=0$ & $a= \left( \frac{9C}{4} \right)^{\frac{1}{3}} \tau^{\frac{2}{3}}$ & $a=\left( 4C' \right)^{\frac{1}{4}} \tau^{\frac{1}{2}}$ \\
\hline
\multirow{2}{*}{3-hyperboloid, $k=-1$} & $a=\frac{1}{2} C \left( \cosh{\eta} - 1 \right)$ & $a=\sqrt{C'} \left( \left( 1 + \frac{\tau}{\sqrt{C'}} \right)^2 -1 \right)^{\frac{1}{2}}$ \\
& $\tau=\frac{1}{2}C \left( \sinh{\eta} - \eta \right)$ & \\
\hline
\end{tabular}
\end{center}

but i'd like any advice on how to make it look a bit more professional. for example, that line that's incomplete in the middle - how do i sort that?

thanks.
 
Physics news on Phys.org
Delete the '\\' after the \hline after the "SPATIAL GEOMETRY" line.
 
cheers. i also get a line sticking out the bottom between the spatial geometry and dust columns. any advice on how to deal with that?
 
If you want "Spatial Geoemtry" to be in the middle vertically you can put this
\multirow{3}{*}{SPATIAL GEOMETRY}
in the first row itself.
 
Although n.karthick already necroposted, I guess, I can just add something as well:

Never EVER use the standard LaTeX tabular environment with vertical lines. It's absolutely horrible.

Use the booktabs package, and arrange your table layout by justifying your cells' contents.
 
The left side of A^* is A = \left[<br /> \begin{smallmatrix}<br /> 9 &amp;7\\<br /> 1 &amp;1<br /> \end{smallmatrix} \right] and the right side of A^* is I = \left[<br /> \begin{smallmatrix}<br /> 1 &amp;0\\<br /> 0 &amp;1<br /> \end{smallmatrix} \right]. The idea is to reduce the left side of A^* from A to I in order to produce the right side of A^*_t from I to A^{-1}.

Sorry. Just testing. Apparently your testing thread is no longer active.
 
The left side of A^* is A = \left[<br /> \begin{smallmatrix}<br /> 9 &amp;7\\<br /> 1 &amp;1<br /> \end{smallmatrix} \right] and the right side of A^* is I = \left[<br /> \begin{smallmatrix}<br /> 1 &amp;0\\<br /> 0 &amp;1<br /> \end{smallmatrix} \right]. The idea is to reduce the left side of A^* from A to I in order to produce the right side of A^*_t from I to A^{-1}.

Now the left side of A^*_t is I = \left[<br /> \begin{smallmatrix}<br /> 1 &amp;0\\<br /> 0 &amp;1<br /> \end{smallmatrix} \right] and the right side of A^*_t is A^{-1} = \left[ \frac{1}{2}<br /> \begin{smallmatrix}<br /> 1 &amp;-7\\<br /> -1 &amp;9<br /> \end{smallmatrix} \right]. In other words, as A is reduced from A to I, A^{-1} is simultaneously produced from I to A^{-1}.
 
The left side of A^* is A = \left[<br /> \begin{smallmatrix}<br /> 9 &amp;7\\<br /> 1 &amp;1<br /> \end{smallmatrix} \right]<br /> and the right side of A^* is I = \left[<br /> \begin{smallmatrix}<br /> 1 &amp;0\\<br /> 0 &amp;1<br /> \end{smallmatrix} \right]. The idea is to reduce the left side of A^* from A to I in order to produce the right side of A^*_t from I to A^{-1}.

Now the left side of A^*_t is I = \left[<br /> \begin{smallmatrix}<br /> 1 &amp;0\\<br /> 0 &amp;1<br /> \end{smallmatrix} \right] and the right side of A^*_t is A^{-1} = \frac{1}{2} \left[<br /> \begin{smallmatrix}<br /> 1 &amp;-7\\<br /> -1 &amp;9<br /> \end{smallmatrix} \right]. In other words, as A is reduced from A to I, A^{-1} is simultaneously produced from I to A^{-1}.
 
Your problem states that 325 people attended the theatre that day, grossing \$ 2675, at \$ 9 per ticket per adult and \$ 7 per ticket per child. This means that \$ 9 times the number of adults plus \$ 7 times the number of children produced \$ 2675, and that the total number of adults plus children was 325. This is your system of linear equations:

<br /> \begin{align*}<br /> 9x_1 + 7x_2 &amp;= 2675\\<br /> \phantom{9}x_1 + \phantom{7}x_2 &amp;= 325<br /> \end{align*}<br />

You mentioned that you needed to use matrices to solve the problem. Then you will need to convert your system of linear equations to matrix form, as follows:

<br /> \begin{equation*}<br /> \begin{bmatrix}<br /> 9 &amp; 7\\<br /> 1 &amp; 1<br /> \end{bmatrix}<br /> \begin{bmatrix}<br /> x_1\\<br /> x_2<br /> \end{bmatrix}<br /> =<br /> \begin{bmatrix}<br /> 2675\\<br /> 325<br /> \end{bmatrix} <br /> \end{equation*}<br />

This will produce a matrix equation of the form AX = B for coefficient matrix A = \left[<br /> \begin{smallmatrix}<br /> 9 &amp; 7\\<br /> 1 &amp; 1<br /> \end{smallmatrix} \right], solution matrix X = \left[<br /> \begin{smallmatrix}<br /> x_1\\<br /> x_2<br /> \end{smallmatrix} \right], constant matrix B = \left[<br /> \begin{smallmatrix}<br /> 2675\\<br /> 325<br /> \end{smallmatrix} \right] and identity matrix I = \left[<br /> \begin{smallmatrix}<br /> 1 &amp;0\\<br /> 0 &amp;1<br /> \end{smallmatrix} \right] such that:

<br /> \begin{align*}<br /> AX &amp;= B\\<br /> A^{-1}AX &amp;= A^{-1}B\\<br /> IX &amp;= A^{-1}B\\<br /> X &amp;= A^{-1}B<br /> \end{align*}<br />

Given X and B, you need to find A^{-1}, the inverse matrix of A, if it exists, to solve the equation. Using elementary row operations, r_i, on A^*, the augmented matrix of A, allows you to obtain A^{-1}:

<br /> \begin{align*}<br /> A^* &amp;= [A|I] \xrightarrow{r_1} \cdots \xrightarrow{r_n} [I|A^{-1}] = A^*_t\\<br /> &amp;=<br /> \begin{bmatrix}<br /> 9 &amp;7 &amp;| &amp;1 &amp;0\\<br /> 1 &amp;1 &amp;| &amp;0 &amp;1<br /> \end{bmatrix}<br /> \xrightarrow{r_1} \cdots \xrightarrow{r_4}<br /> \begin{bmatrix}<br /> 1 &amp;0 &amp;| &amp;\frac{1}{2} &amp;-\frac{7}{2}\\<br /> 0 &amp;1 &amp;| &amp;-\frac{1}{2} &amp;\frac{9}{2}<br /> \end{bmatrix}<br /> = A^*_t <br /> \end{align*}<br />
(Refer to the Appendix for a description of the elementary row operations which transform A^* to A^*_t.)

So that:

<br /> \begin{align*}<br /> A^{-1} &amp;= \phantom{\dfrac{1}{2}}<br /> \begin{bmatrix}<br /> \frac{1}{2} &amp;-\frac{7}{2}\\<br /> -\frac{1}{2} &amp;\frac{9}{2}<br /> \end{bmatrix}\\<br /> &amp;= \dfrac{1}{2}<br /> \begin{bmatrix}<br /> 1 &amp;-7\\<br /> -1 &amp;9<br /> \end{bmatrix} <br /> \end{align*}<br />
Since X = A^{-1} B for X = \left[<br /> \begin{smallmatrix}<br /> x_1\\<br /> x_2<br /> \end{smallmatrix} \right], A^{-1} = \frac{1}{2} \left[<br /> \begin{smallmatrix}<br /> 1 &amp;-7\\<br /> -1 &amp;9<br /> \end{smallmatrix} \right] and B = \left[<br /> \begin{smallmatrix}<br /> 2675\\<br /> 325<br /> \end{smallmatrix} \right], then:

<br /> \begin{align*}<br /> \begin{bmatrix}<br /> x_1\\<br /> x_2<br /> \end{bmatrix}<br /> &amp;= \dfrac{1}{2}<br /> \begin{bmatrix}<br /> 1 &amp;-7\\<br /> -1 &amp;9<br /> \end{bmatrix}<br /> \begin{bmatrix}<br /> 2675\\<br /> 325<br /> \end{bmatrix}\\<br /> &amp;= \dfrac{1}{2}<br /> \begin{bmatrix}<br /> 2675 - 7 \cdot 325\\<br /> 9 \cdot 325 - 2675<br /> \end{bmatrix}\\<br /> &amp;= \dfrac{1}{2}<br /> \begin{bmatrix}<br /> 2675-2275\\<br /> 2925-2675<br /> \end{bmatrix}\\<br /> &amp;= \phantom{\frac{1}{2}}<br /> \begin{bmatrix}<br /> 200\\<br /> 125<br /> \end{bmatrix}<br /> \end{align*}<br />

Therefore, x_1=200 adults and x_2=125 children attended the theatre that day.
 
Last edited:
  • #10
Appendix

The left side of A^* is A = \left[<br /> \begin{smallmatrix}<br /> 9 &amp;7\\<br /> 1 &amp;1<br /> \end{smallmatrix} \right] and the right side of A^* is I = \left[<br /> \begin{smallmatrix}<br /> 1 &amp;0\\<br /> 0 &amp;1<br /> \end{smallmatrix} \right]. The idea is to reduce the left side of A^* from A to I in order to reproduce the right side of A^*_t from I to A^{-1}.

<br /> \begin{align*}<br /> A^* &amp;= \; \,<br /> \begin{bmatrix}<br /> 9 &amp;7 &amp;|&amp;1 &amp;0\\<br /> 1 &amp;1 &amp;|&amp;0 &amp;1<br /> \end{bmatrix}\\<br /> &amp;\xrightarrow{r_1}<br /> \begin{bmatrix}<br /> 1 &amp;1 &amp;| &amp;0 &amp;1\\<br /> 9 &amp;7 &amp;| &amp;1 &amp;0<br /> \end{bmatrix}\\<br /> &amp;\xrightarrow{r_2}<br /> \begin{bmatrix}<br /> 1 &amp;1 &amp;| &amp;0 &amp;1\\<br /> 0 &amp;-2 &amp;| &amp;1 &amp;-9<br /> \end{bmatrix}\\<br /> &amp;\xrightarrow{r_3}<br /> \begin{bmatrix}<br /> 1 &amp;1 &amp;| &amp;0 &amp;1\\<br /> 0 &amp;1 &amp;| &amp;-\frac{1}{2} &amp;\frac{9}{2}<br /> \end{bmatrix}\\<br /> &amp;\xrightarrow{r_4}<br /> \begin{bmatrix}<br /> 1 &amp;0 &amp;| &amp;\frac{1}{2} &amp;-\frac{7}{2}\\<br /> 0 &amp;1 &amp;| &amp;-\frac{1}{2} &amp;\frac{9}{2}<br /> \end{bmatrix}\\<br /> &amp;\; \, = A^*_t<br /> \end{align*}<br />

Now the left side of A^*_t is I = \left[<br /> \begin{smallmatrix}<br /> 1 &amp;0\\<br /> 0 &amp;1<br /> \end{smallmatrix} \right] and the right side of A^*_t is A^{-1} = \left[<br /> \begin{smallmatrix}<br /> 1/2 &amp;-7/2\\<br /> -1/2 &amp;9/2<br /> \end{smallmatrix} \right]. In other words, as A is reduced from A to I, A^{-1} is simultaneously reproduced from I to A^{-1}.
 
Back
Top