- #1
mpf
- 4
- 0
I have a 36" OD aluminum drum within another 48" OD aluminum drum creating 6” channel between the two diameters. The total height of the drum assembly is 16” This design project that I am working on requires me to fill this channel up with 12” of water which equates to about 342.5 lbs of water. I am going to spin this drum at 17.91 RPM which equates the outside radius (24”) to have a tangential velocity of 3.7483 ft/s. Now to my question…..I am looking for the maximum pressure caused by the centripetal force on the outer ring of the drum while the drum is spinning. Logically the maximum force will be at the 12 depth mark because that’s where the most amount of pressure is located.
My way of doing it: I found the ambient pressure at a 12in depth which was 0.43363psi. From the f=pa eq. I then picked an area at the bottom of the drum which was 6” wide (channel width) x 1” giving me an area of 6 in^2. Took the f=pa eq. and multiplied it by the ambient pressure at 12” and got 2.60178 lbs. Plugged that into the f=ma eq. to get my weight given that area and got .0808lbs. Put that bad boy into the centripetal force eq. given my tan. Velocity which is 3.7483 ft/s and the radius which is 2ft and got .5674lbs of force at any location around the outside of the drum at a 12” depth. I know the load is a distributed load so you can solve with an integral for the whole drum wall or use a finite elemental analysis program to solve it but I tried to cut corners and get a ball part estimate. Can someone either validate this or tell me I’m way wrong and help me out. Thanks much
My way of doing it: I found the ambient pressure at a 12in depth which was 0.43363psi. From the f=pa eq. I then picked an area at the bottom of the drum which was 6” wide (channel width) x 1” giving me an area of 6 in^2. Took the f=pa eq. and multiplied it by the ambient pressure at 12” and got 2.60178 lbs. Plugged that into the f=ma eq. to get my weight given that area and got .0808lbs. Put that bad boy into the centripetal force eq. given my tan. Velocity which is 3.7483 ft/s and the radius which is 2ft and got .5674lbs of force at any location around the outside of the drum at a 12” depth. I know the load is a distributed load so you can solve with an integral for the whole drum wall or use a finite elemental analysis program to solve it but I tried to cut corners and get a ball part estimate. Can someone either validate this or tell me I’m way wrong and help me out. Thanks much