Max Value of $a^2+2a+b^2$ When $2a^2-6a+b^2=0$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
SUMMARY

The problem involves maximizing the expression $a^2 + 2a + b^2$ under the constraint $2a^2 - 6a + b^2 = 0$. By substituting $b^2$ from the constraint into the expression to be maximized, the maximum value can be determined. The solution reveals that the maximum occurs at specific values of $a$ and $b$ that satisfy the given equation.

PREREQUISITES
  • Understanding of quadratic equations and their properties
  • Knowledge of optimization techniques in calculus
  • Familiarity with substitution methods in algebra
  • Basic proficiency in working with real numbers and inequalities
NEXT STEPS
  • Study optimization techniques in calculus, focusing on constrained optimization
  • Learn about Lagrange multipliers for solving optimization problems with constraints
  • Explore quadratic functions and their graphical representations
  • Investigate the relationship between variables in algebraic expressions
USEFUL FOR

Mathematicians, students studying algebra and calculus, and anyone interested in solving optimization problems involving real numbers.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
If the real numbers $a$ and $b$ satisfy the condition $2a^2-6a+b^2=0$, find the maximal value of $a^2+2a+b^2$.
 
Mathematics news on Phys.org
anemone said:
If the real numbers $a$ and $b$ satisfy the condition $2a^2-6a+b^2=0$, find the maximal value of $a^2+2a+b^2$.

we need to maximize $a^2+2a+b^2$ or $a^2+2a+b^2-(2a^2-6a+b^2)$ as $2^{nd}$ expression is zero hence constant
or $8a-a^2 = 16-(a^2-8a + 16) = 16-(a-4)^2$
above is maximum when $|a-4|$ minimum.
we need to find it under given constraint
which is
$2a^2 -6a + b^2 = 0$
or $(4a^2 - 12a + 9) + 2b^2 = 9$
or $(2a-3)^2 + b^2 = 9$
or $- 3 < = 2a - 3 <= 3$ or a has to be between 0 and 3
so a = 3 and maximum value of given expression = 15.
 
anemone said:
If the real numbers $a$ and $b$ satisfy the condition $2a^2-6a+b^2=0$, find the maximal value of $a^2+2a+b^2$.

My solution:

In order for $a$ to be real, we require:

$$(-6)^2-4(2)(b^2)\ge0$$

$$9-2b^2\ge0$$

$$0\le b^2\le\frac{9}{2}$$

In order for $b$ to be real, we require:

$$6a-2a^2\ge0$$

$$a(3-a)\ge0\implies 0\le a\le3$$

For simplicity, let's write the objective function in terms of $a$ only using the constraint:

$$f(a)=a^2+2a+6a-2a^2=8a-a^2$$

$$f'(a)=8-2a=2(4-a)$$

On the domain for $a$, we find $f$ is strictly increasing, hence:

$$f_{\max}=f(3)=15$$
 
Very good job to both of you! And thanks for participating!(Cool)(Wink)
 

Similar threads

Replies
6
Views
3K
  • · Replies 19 ·
Replies
19
Views
3K
Replies
21
Views
3K
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K