After the work of Korbinian Brodmann (1909), the neurons of the cerebral cortex are grouped into six main layers, from outside (pial surface) to inside (white matter):
1. The molecular layer I, which contains few scattered neurons and consists mainly of extensions of apical dendrites and horizontally-oriented axons, as well as glial cells[4]. Some Cajal-Retzius and spiny stellate neurons can be found here.
2. The external granular layer II, which contains small pyramidal neurons and numerous stellate neurons
3. The external pyramidal layer III, which contains predominantly small and medium-size pyramidal neurons, as well as non-pyramidal neurons with vertically-oriented intracortical axons; layers I through III are the main target of interhemispheric corticocortical afferents, and layer III is the principal source of corticocortical efferents
4. The internal granular layer IV, which contains different types of stellate and pyramidal neurons, and is the main target of thalamocortical afferents as well as intra-hemispheric corticocortical afferents
5. The internal pyramidal layer V, which contains large pyramidal neurons (such as the Betz cells in the primary motor cortex); it is the principal source of subcortical efferents
6. The multiform layer VI, which contains few large pyramidal neurons and many small spindle-like pyramidal and multiform neurons; layer VI sends efferent fibers to the thalamus, establishing a very precise reciprocal interconnection between the cortex and the thalamus (Creutzfeldt, 1995).