Maximum area of a triangle inscribed in another triangle?

AI Thread Summary
To maximize the area of triangle BDE inscribed in equilateral triangle ABC, DE should be set to a/2. The area can be calculated using the formula A = 1/2 * DE * height, which simplifies the process. For minimizing the perimeter of triangle BDE, the discussion highlights the complexity of deriving the expression and suggests factoring out 'a' from the perimeter equation. Simplifying the expression under the square root and applying differentiation techniques are recommended to find the optimal solution. Overall, the conversation emphasizes the importance of using effective mathematical strategies to tackle these geometry problems.
Daveigh
Messages
5
Reaction score
0

Homework Statement


[/B]
Hello!

I have this question which I don't quite know how to solve...

ABC is an equilateral triangle - the length of its sides equal to (a).
DE is parallel to BC

1. What length should DE be to achieve the largest possible area of triangle BDE?
2. What length should DE be to achieve the smallest possible perimeter of triangle BDE?


How should this be done (step-by-step, my knowledge of math is quite basic)?

RrU2DrM.jpg


The attempt at a solution

I tried to solve the first question and got that DE should be (a/2) to make the maximum area of BDE. (I let DE = (a-a/x) and BD = (a/x), I used a formula to calculate area of a triangle using 2 sides and the angle between (120°) and then I derived the area expression...
But I think that what I was attempting is very messy, and I am unsure if the way I did it is correct.

Also, I didn't manage to solve the second question about the perimeter.
If anyone could explain and show the correct answer for comparison, I would be very grateful.
 
Physics news on Phys.org
Daveigh said:
I tried to solve the first question and got that DE should be (a/2) to make the maximum area of BDE. (I let DE = (a-a/x) and BD = (a/x), I used a formula to calculate area of a triangle using 2 sides and the angle between (120°) and then I derived the area expression...
But I think that what I was attempting is very messy, and I am unsure if the way I did it is correct.
The method looks fine and the answer is correct, that looks good.
It is easier if you use the formula A=1/2 (DE)*(height) because then you avoid dealing with odd angles.

Daveigh said:
Also, I didn't manage to solve the second question about the perimeter.
What did you get as perimeter?
 
I tried making an expression for the perimeter but when I differentiated it it was so large and I didn't know what to do next.
(a/x) + (a-a/x) + sqrt((a/x)^2+(a-a/x)^2-2*(a/x)*(a-a/x)*cos120°)
I couldn't get rid of 'a' to find 'x'...
 
Daveigh said:
I tried making an expression for the perimeter but when I differentiated it it was so large and I didn't know what to do next.
(a/x) + (a-a/x) + sqrt((a/x)^2+(a-a/x)^2-2*(a/x)*(a-a/x)*cos120°)
I couldn't get rid of 'a' to find 'x'...

You can factor out a from the expression of the perimeter. Note that a/x + (a-a/x) = a.
Expand the parentheses under the square root and simplify before taking the derivative.
 
Last edited:
There are two other tricks that can help:
The minimum of f(x) is also a minimum of f(x)+b with some constant b.
The minimum of f(x) is also a minimum of f2(x). The minimum of f2(x), if not zero, is a minimum OR maximum of f(x) depending on the sign of f(x).

But there is an even better approach: ehild's hint gives you the sum of two sides of the triangle, and it is constant. You just have to minimize the length of a specific side (which one?), and this can be done without calculations.
 
Since ##px^9+q## is the factor, then ##x^9=\frac{-q}{p}## will be one of the roots. Let ##f(x)=27x^{18}+bx^9+70##, then: $$27\left(\frac{-q}{p}\right)^2+b\left(\frac{-q}{p}\right)+70=0$$ $$b=27 \frac{q}{p}+70 \frac{p}{q}$$ $$b=\frac{27q^2+70p^2}{pq}$$ From this expression, it looks like there is no greatest value of ##b## because increasing the value of ##p## and ##q## will also increase the value of ##b##. How to find the greatest value of ##b##? Thanks

Similar threads

Back
Top