May I get a comment on this proof?

  • Thread starter Thread starter flyingpig
  • Start date Start date
  • Tags Tags
    Proof
flyingpig
Messages
2,574
Reaction score
1

Homework Statement



Prove directly:

Prove that if 2^{2x} is odd integer, then 4^{x} is odd integer


The Attempt at a Solution



2^{2x} = 2k + 1 for some k is integer

2^{2x} = 4^{x} = 2k + 1

Thus completes the proof?

Am I allow to make the assumption (fact) 2^{2x} = 4^{x}?

Thanks
 
Physics news on Phys.org
That is correct. It is indeed true that a^{bc}=(a^b)^c.
 
nvm...I am just being an idiot
 
That's okay, sometimes I get concerned when things are trivial too.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top