A Meaning of "symbol" in algebraic field theory?

strangerep
Science Advisor
Messages
3,766
Reaction score
2,213
TL;DR Summary
Physicist-friendly explanation of "symbol ##\phi(f)##", please?
I'm probably inadequately equipped to understand this paper by Bucholtz, Longo and Rehren on "Causal Lie products of free fields and the emergence of quantum field theory", but I decided to give it a try. Alas, I got stuck in the 1st para of sect 2 where it says:
We consider a Lie algebra ##\Phi## that is generated by the symbols ##\phi(f)## which are real linear with regard to ##f \in \mathcal{s}(\mathbb{R}^d)##. [...]
Although I've seen the term "symbol ##\phi(f)##" before, I've never succeeded in properly understanding what it means. Could someone please explain the meaning of this use of "symbol" in a physicist-friendly way?
 
Physics news on Phys.org
##\phi(f)=\int d^4x\, \phi(x)f(x)##
It's similar to a Fourier transform, except that ##f(x)## is not a plane wave but a function that better behaves under integrals (e.g. a function from a Schwartz space or a function defined on a compact support).
 
Last edited:
Oh, thanks, I was over-thinking it.

"Simples".
 
I might be misreading it but isn't it meant in the usual sense of the word? You just take the set of elements indexed by the elements of the Schwartz space, and denoted by ##\phi(f)##, then consider the Lie algebra generated by them (with some additional requirements, that they are linear and satisfy the Klein-Gordan equation).
 
martinbn said:
I might be misreading it but isn't it meant in the usual sense of the word?
It depends what you mean by "usual". In standard English, it means:

noun:
1. something used for or regarded as representing something else; a material object representing something, often something immaterial; emblem, token, or sign.

2. a letter, figure, or other character or mark or a combination of letters or the like used to designate something: the algebraic symbol x; the chemical symbol Au.

3. (especially in semiotics) a word, phrase, image, or the like having a complex of associated meanings and perceived as having inherent value separable from that which is symbolized, as being part of that which is symbolized, and as performing its normal function of standing for or representing that which is symbolized: usually conceived as deriving its meaning chiefly from the structure in which it appears, and generally distinguished from a sign.
... none of which are helpful to understand the mathematical meaning. :oldfrown:

Anyway,.. no worries... I get it now.

Still,... it's seem strange (to me anyway) that they use the phrase "emergence of QFT" in their title, but tacitly assume (ISTM) right from the start that ##\phi## is an operator-valued distribution.
 
Last edited:
strangerep said:
[...].

Still,... it's seem strange (to me anyway) that they use the phrase "emergence of QFT" in their title, but tacitly assume (ISTM) right from the start that ##\phi## is an operator-value distribution.

No, not a Fock-state-operator-valued distribution. That is already a quantum field. The ##\phi(f)## should only be a distribution on (typically) Schwartz space.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top