Graduate Meaning of "symbol" in algebraic field theory?

Click For Summary
The discussion centers on the interpretation of the term "symbol" in the context of algebraic field theory, specifically in relation to the paper by Bucholtz, Longo, and Rehren. Participants express confusion about the mathematical meaning of "symbol" as it relates to the notation ##\phi(f)##, which represents a linear functional acting on Schwartz space functions. Clarifications reveal that ##\phi(f)## is not a quantum field operator but rather a distribution that generates a Lie algebra. The conversation also touches on the authors' use of the phrase "emergence of QFT," noting a perceived inconsistency in assuming ##\phi## is an operator-valued distribution from the outset. Overall, the thread highlights the complexities of terminology in advanced theoretical physics.
strangerep
Science Advisor
Messages
3,766
Reaction score
2,214
TL;DR
Physicist-friendly explanation of "symbol ##\phi(f)##", please?
I'm probably inadequately equipped to understand this paper by Bucholtz, Longo and Rehren on "Causal Lie products of free fields and the emergence of quantum field theory", but I decided to give it a try. Alas, I got stuck in the 1st para of sect 2 where it says:
We consider a Lie algebra ##\Phi## that is generated by the symbols ##\phi(f)## which are real linear with regard to ##f \in \mathcal{s}(\mathbb{R}^d)##. [...]
Although I've seen the term "symbol ##\phi(f)##" before, I've never succeeded in properly understanding what it means. Could someone please explain the meaning of this use of "symbol" in a physicist-friendly way?
 
Physics news on Phys.org
##\phi(f)=\int d^4x\, \phi(x)f(x)##
It's similar to a Fourier transform, except that ##f(x)## is not a plane wave but a function that better behaves under integrals (e.g. a function from a Schwartz space or a function defined on a compact support).
 
Last edited:
Oh, thanks, I was over-thinking it.

"Simples".
 
I might be misreading it but isn't it meant in the usual sense of the word? You just take the set of elements indexed by the elements of the Schwartz space, and denoted by ##\phi(f)##, then consider the Lie algebra generated by them (with some additional requirements, that they are linear and satisfy the Klein-Gordan equation).
 
martinbn said:
I might be misreading it but isn't it meant in the usual sense of the word?
It depends what you mean by "usual". In standard English, it means:

noun:
1. something used for or regarded as representing something else; a material object representing something, often something immaterial; emblem, token, or sign.

2. a letter, figure, or other character or mark or a combination of letters or the like used to designate something: the algebraic symbol x; the chemical symbol Au.

3. (especially in semiotics) a word, phrase, image, or the like having a complex of associated meanings and perceived as having inherent value separable from that which is symbolized, as being part of that which is symbolized, and as performing its normal function of standing for or representing that which is symbolized: usually conceived as deriving its meaning chiefly from the structure in which it appears, and generally distinguished from a sign.
... none of which are helpful to understand the mathematical meaning. :oldfrown:

Anyway,.. no worries... I get it now.

Still,... it's seem strange (to me anyway) that they use the phrase "emergence of QFT" in their title, but tacitly assume (ISTM) right from the start that ##\phi## is an operator-valued distribution.
 
Last edited:
strangerep said:
[...].

Still,... it's seem strange (to me anyway) that they use the phrase "emergence of QFT" in their title, but tacitly assume (ISTM) right from the start that ##\phi## is an operator-value distribution.

No, not a Fock-state-operator-valued distribution. That is already a quantum field. The ##\phi(f)## should only be a distribution on (typically) Schwartz space.
 
I am slowly going through the book 'What Is a Quantum Field Theory?' by Michel Talagrand. I came across the following quote: One does not" prove” the basic principles of Quantum Mechanics. The ultimate test for a model is the agreement of its predictions with experiments. Although it may seem trite, it does fit in with my modelling view of QM. The more I think about it, the more I believe it could be saying something quite profound. For example, precisely what is the justification of...

Similar threads

  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
4K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
863
Replies
3
Views
4K