from the OP's link:
More likely, he didn't realize his method was wrong in principle, but he got lucky and two errors canceled out.
The big conceptual error is assuming that the EM waves are traveling in a horizontal plane, so you can assume the distance between the spots = the wavelength (or half a wavelength 1/2, if you don't like the answer you got the first time!). The only "waves" that will produce heat spots in a fixed location are standing waves, and in a rectangular box like a typical microwave the standing waves are three dimensional. They can be very complicated - the wave can reflect off the walls, roof and floor of the box and make several "orbits" around the box before it repeats. What you are measuring is only a slice cut through that 3-D wave pattern. If you want to explore this further, it might be interesting to repeat the experiment at several different heights from the floor to the top of the oven, and compare the different patterns you get.
The "real" wavelength inside the oven is something like ##\sqrt{kx^2 + ly^2 + mz^2}/n, where x y and z are the width, height, and depth of the oven, and k,l,m,and n are four unknown integers. If you knew the values of k,l,m, and n, you could relate that to the pattern of spots you measured. The only problem is that you don't know what the integers were.