1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Mechanics - inclined plane with friction and finding max M

  1. Sep 4, 2013 #1
    1. The problem statement, all variables and given/known data
    A block with mass M is on an inclined plane having an angle of [itex]\theta[/itex] with respect to the horizontal. The coefficient of friction is [itex]\mu[/itex]. Find the maximum mass that the block can have before sliding down.

    2. Relevant equations

    [itex]\mu_{s}[/itex]= tan([itex]\theta[/itex]) - I derived this and tried to force it back into the problem with no luck.

    3. The attempt at a solution

    This is for an upper division mechanics class, so I've run across problems similar before. I'm not going to get crazy here, because I've attempted this problem several different ways, but I'm starting to think there is a typo in the problem.

    After several attempts, I came to the same conclusion each time that no matter the mass, static friction with not convert to kinetic since increases the mass increases the static friction at a directly proportional rate. It shows up clearly in the math when I write the net force equations for both X and Y, and solving ends up cancelling out the M's, which tells me there is no dependency on the mass.

    Is there something I'm missing here? Because I cannot for the life of me figure out this problem with cancelling the M's in the force equations. Any suggestions/incite?
  2. jcsd
  3. Sep 4, 2013 #2


    User Avatar

    Staff: Mentor

    So your conclusion would be that the mass is irrelevant since the friction force scales with the mass; if a light block doesn't slide, then neither will a heavy one so long as the friction coefficient remains the same. You haven't missed a thing :smile: There is no maximum mass according to theory.
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted