• Support PF! Buy your school textbooks, materials and every day products Here!

Mechanics question with parachute

  • Thread starter Sink41
  • Start date
21
0
1. A parachutist of mass m falls freely until his parachute opens. When it is open he experiences an upward resistance kv where v is his speed and k is a positive constant.

The parachutist falls from rest freely under gravity for a time [itex]\frac{m}{2k}[/itex] and then opens his parachute. Prove that the total distance he has fallen when his velocity is [itex]\frac{3mg}{4k}[/itex] is [itex]\frac{m^2 g}{8 k^2} (8 \ln2 - 1)[/itex]




2.
[tex]a = v \frac{dv}{ds} [/tex]

[tex] v^2 = u^2 + 2 a s [/tex]

[tex] v = u + a t [/tex]




3. Until parachute is opened:

[tex]t = \frac{m}{2k}[/tex]

[tex]a = g[/tex]

[tex]u = 0[/tex]


[tex]v = u + a t[/tex]

[tex]v = \frac{mg}{2k}[/tex]


[tex] v^2 = u^2 + 2 a s [/tex]

[tex] \frac{m^2 g^2}{4 k^2} = 2 g s [/tex]

[tex] \frac{m^2 g}{8 k^2} = s [/tex]




When parachute is opened:

Force downwards [itex]ma = mg - kv[/itex]

[tex] m v \frac{dv}{ds} = mg - kv [/tex]

[tex] \int \frac{mv}{mg - kv} dv = \int ds[/tex]


Substitution: [tex] u = mg - kv [/tex]

[tex]\frac{du}{dv} = -k[/tex]

[tex]v = \frac{u - mg}{-k}[/tex]


[tex] \int \frac{mv}{-k (mg - kv)} du = \int ds[/tex]

[tex] \int \frac{m(u - mg)}{u} du = \int ds[/tex]

[tex] \int m - \frac{m^2 g}{u} du = \int ds[/tex]

[tex] mu - m^2 g \ln u = \int ds[/tex]

[tex] m (mg - kv) - m^2 g \ln (mg - kv) = s + c[/tex] where c is a constant




To work out constant:

[tex]v = \frac{mg}{2k}[/tex]

[tex]s = \frac{m^2 g}{8 k^2}[/tex]


[tex]m^2 g - mk \frac{mg}{2k} - m^2 g \ln ( mg - \frac{kmg}{2k} ) = \frac{m^2 g}{8 k^2} + c[/tex]

[tex]\frac{m^2 g}{2} - m^2 g \ln ( \frac{mg}{2} ) - \frac{m^2 g}{8 k^2} = c[/tex]




Putting c back into equation:

[tex]m^2 g - mkv - m^2 g \ln ( mg - kv ) - \frac{m^2 g}{2} + m^2 g \ln ( \frac{mg}{2} ) + \frac{m^2 g}{8 k^2} = s[/tex]




Putting in value of v:

[tex]- \frac{m^2 g}{4} + m^2 g \ln 2 + \frac{m^2 g}{8 k^2} = s[/tex]

[tex]\frac{m^2 g}{8} ( 8 \ln 2 - 2 + \frac{1}{k^2} ) = s[/tex]





So i have wrong answer where have i gone wrong?
 
Last edited:

Fermat

Homework Helper
872
1
...

When parachute is opened:

Force downwards [itex]ma = mg - kv[/itex]

[tex] m v \frac{dv}{ds} = mg - kv [/tex]

[tex] \int \frac{mv}{mg - kv} dv = \int ds[/tex]


Substitution: [tex] u = mg - kv [/tex]

[tex]\frac{du}{dv} = -k[/tex]

[tex]v = \frac{u - mg}{-k}[/tex]


[tex] \int \frac{mv}{-k (mg - kv)} du = \int ds[/tex]

[tex] \int \frac{m(u - mg)}{k^2u} du = \int ds[/tex]



...
Your error is shown above in the last line. You cancelled the (-k) on the bottom instead of getting (-k)² (on the bottom)
 
1
0
u have given time is m/2k and k is a constant(dimensionless).......so how come time have dimensions "kg" (m->kg)......so check ur qstn..
 

Fermat

Homework Helper
872
1
k is a constant but it cerainly isn't dimensionless.

We are told: Restance = kv
and [R] = N

Since k = R/v, then

[k] = [N/(m/s)]=[Ns/m] - the dimensions of k.

Then [m/2k] = [kg/(Ns/m)] = [kgm/Ns] = - the dimension of time.
 

Related Threads for: Mechanics question with parachute

  • Last Post
Replies
1
Views
3K
  • Last Post
Replies
0
Views
1K
Replies
8
Views
3K
  • Last Post
Replies
1
Views
877
Top