MHB Melissa's question at Yahoo Answers regarding solving a linear first order ODE

AI Thread Summary
The discussion revolves around solving the first order linear ordinary differential equation (ODE) given by df/dy + f(y) = sin(2y). The integrating factor is calculated as e^y, which allows the equation to be rewritten as the derivative of a product. After integrating both sides, integration by parts is applied to solve the integral on the right side, leading to the expression for I. The final general solution for the ODE is f(y) = (sin(2y) - 2cos(2y))/5 + c_1e^(-y), where c_1 is a constant. This solution provides a complete method for addressing the posed differential equation.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Solve this differential Equation: df/dy(t) + f(y) =sin(2y)?

df/dy(t) + f(y) =sin(2y)

I'm really stuck on how to start this differential equation. Thanks!

Here is a link to the original question:

Solve this differential Equation: df/dy(t) + f(y) =sin(2y)? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
We are given to solve the first order linear ODE:

$\displaystyle \frac{df}{dy}+f(y)=\sin(2y)$

I am assuming $\displaystyle f$ is the dependent variable and $\displaystyle y$ is the independent variable, and that the (t) is a typo.

We may begin by calculating our integrating factor $\displaystyle \mu(y)$:

$\displaystyle \mu(y)=e^{\int\,dy}=e^y$

Multiply the ODE by the integrating factor:

$\displaystyle e^y\frac{df}{dy}+f(y)e^y=e^y\sin(2y)$

Now, we may rewrite the left side as the differentiation of a product:

$\displaystyle \frac{d}{dy}\left(e^yf \right)=e^y\sin(2y)$

Integrate with respect to $\displaystyle y$:

$\displaystyle \int\frac{d}{dy}\left(e^yf \right)\,dy=\int e^y\sin(2y)\,dy$

On the right side, we may use integration by parts:

$\displaystyle u=\sin(2y)\,\therefore\,du=2\cos(2y)\,dy$

$\displaystyle dv=e^y\,dy\,\therefore\,v=e^y$

and so we may state:

$\displaystyle I=\int e^y\sin(2y)\,dy=e^y\sin(2y)-2\int e^y\cos(2y)\,dy$

Now, using integration by parts again:

$\displaystyle u=\cos(2y)\,\therefore\,du=-2\sin(2y)\,dy$

$\displaystyle dv=e^y\,dy\,\therefore\,v=e^y$

and we have:

$\displaystyle I=e^y\sin(2y)-2\left(e^y\cos(2y)+2\int e^y\sin(2y)\,dy \right)$

$\displaystyle I=e^y\sin(2y)-2e^y\cos(2y)-4I$

Solve for $\displaystyle I$:

$\displaystyle I=\frac{e^y(\sin(2y)-2\cos(2y))}{5}+c_1$

Now, back to integrating the ODE, we have:

$\displaystyle e^yf=\frac{e^y(\sin(2y)-2\cos(2y))}{5}+c_1$

Hence, the general solution is given by:

$\displaystyle f(y)=\frac{\sin(2y)-2\cos(2y)}{5}+c_1e^{-y}$
 
Last edited:
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top