Metric tensor and gradient in spherical polar coordinates

Click For Summary
The discussion focuses on calculating the metric tensor components in spherical coordinates and verifying the orthogonality of the coordinate basis vectors. The participants compute various components of the metric tensor, confirming that certain inner products yield zero, indicating orthogonality. They also clarify the definition of the gradient in terms of the metric tensor, emphasizing the distinction between covariant and contravariant vectors. The importance of correctly defining the function f in the context of the gradient is highlighted, ensuring that the calculations align with the properties of the metric. The conversation concludes with a note on the conditions under which the inverse of the metric tensor holds true.
spaghetti3451
Messages
1,311
Reaction score
31

Homework Statement



Let ##x##, ##y##, and ##z## be the usual cartesian coordinates in ##\mathbb{R}^{3}## and let ##u^{1} = r##, ##u^{2} = \theta## (colatitude), and ##u^{3} = \phi## be spherical coordinates.

  1. Compute the metric tensor components for the spherical coordinates ##g_{r\theta}:=g_{12}=\big\langle\frac{\partial}{\partial r}\ ,\ \frac{\partial}{\partial \theta}\big\rangle\ \text{etc.}##
  2. Compute the coefficients ##(\nabla\ f)^{j}## in ##\nabla\ f = (\nabla\ f)^{r}\frac{\partial}{\partial r}+(\nabla\ f)^{\theta}\frac{\partial}{\partial \theta}+(\nabla\ f)^{\phi}\frac{\partial}{\partial \phi}##.
  3. Verify that ##\frac{\partial}{\partial r}##, ##\frac{\partial}{\partial\theta}##, and ##\frac{\partial}{\partial\phi}## are orthogonal, but that not all are unit vectors. Define the unit vectors ##{\bf{e}}'_{j}=\frac{(\partial / \partial u^{j})}{||\partial / \partial u^{j}||}## and write ##\nabla\ f## in terms of this orthonormal set ##\nabla\ f = (\nabla\ f)'^{r}{\bf{e}}'_{r}+(\nabla\ f)'^{\theta}{\bf{e}}'_{\theta}+(\nabla\ f)'^{\phi}{\bf{e}}'_{\phi}##.

Homework Equations



The Attempt at a Solution



## g_{r\theta}:=g_{12}=\big\langle\frac{\partial}{\partial r}\ ,\ \frac{\partial}{\partial \theta}\big\rangle\\
= \big\langle\frac{\partial x}{\partial r}\frac{\partial}{\partial x}+\frac{\partial y}{\partial r}\frac{\partial}{\partial y}+\frac{\partial z}{\partial r}\frac{\partial}{\partial z}\ ,\ \frac{\partial x}{\partial \theta}\frac{\partial}{\partial x}+\frac{\partial y}{\partial \theta}\frac{\partial}{\partial y}+\frac{\partial z}{\partial \theta}\frac{\partial}{\partial z}\big\rangle\\
= \frac{\partial x}{\partial r}\frac{\partial x}{\partial \theta}+\frac{\partial y}{\partial r}\frac{\partial y}{\partial \theta}+\frac{\partial z}{\partial r}\frac{\partial z}{\partial \theta}\\
=(\text{sin}\ \theta\ \text{cos}\ \phi)(r\ \text{cos}\ \theta)(\text{cos}\ \theta)+(\text{sin}\ \theta\ \text{sin}\ \phi)(r\ \text{cos}\ \theta)(\text{sin}\ \phi)+(\text{cos}\ \theta)(-r\ \text{sin}\ \theta)\\
=0##

Am I correct so far?
 
Last edited:
Physics news on Phys.org
failexam said:
Am I correct so far?
Yes
 
Ok, so now let me do the remaining calculations in parts 1 and 2.

## g_{r\phi}:=g_{13}=\big\langle\frac{\partial}{\partial r}\ ,\ \frac{\partial}{\partial \phi}\big\rangle\\
= \big\langle\frac{\partial x}{\partial r}\frac{\partial}{\partial x}+\frac{\partial y}{\partial r}\frac{\partial}{\partial y}+\frac{\partial z}{\partial r}\frac{\partial}{\partial z}\ ,\ \frac{\partial x}{\partial \phi}\frac{\partial}{\partial x}+\frac{\partial y}{\partial \phi}\frac{\partial}{\partial y}+\frac{\partial z}{\partial \phi}\frac{\partial}{\partial z}\big\rangle\\
= \frac{\partial x}{\partial r}\frac{\partial x}{\partial \phi}+\frac{\partial y}{\partial r}\frac{\partial y}{\partial \phi}+\frac{\partial z}{\partial r}\frac{\partial z}{\partial \phi}\\
=(\text{sin}\ \theta\ \text{cos}\ \phi)(-r\ \text{sin}\ \theta\ \text{sin}\ \phi)+(\text{sin}\ \theta\ \text{sin}\ \phi)(r\ \text{sin}\ \theta\ \text{cos}\ \phi)+(\text{cos}\ \theta)(0)\\
=0
##

##
g_{\theta\phi}:=g_{23}=\big\langle\frac{\partial}{\partial \theta}\ ,\ \frac{\partial}{\partial \phi}\big\rangle\\
= \big\langle\frac{\partial x}{\partial \theta}\frac{\partial}{\partial x}+\frac{\partial y}{\partial \theta}\frac{\partial}{\partial y}+\frac{\partial z}{\partial \theta}\frac{\partial}{\partial z}\ ,\ \frac{\partial x}{\partial \phi}\frac{\partial}{\partial x}+\frac{\partial y}{\partial \phi}\frac{\partial}{\partial y}+\frac{\partial z}{\partial \phi}\frac{\partial}{\partial z}\big\rangle\\
= \frac{\partial x}{\partial \theta}\frac{\partial x}{\partial \phi}+\frac{\partial y}{\partial \theta}\frac{\partial y}{\partial \phi}+\frac{\partial z}{\partial \theta}\frac{\partial z}{\partial \phi}\\
=(r\ \text{cos}\ \theta\ \text{cos}\ \phi)(-r\ \text{sin}\ \theta\text{sin}\ \phi)+(r\ \text{cos}\ \theta\ \text{sin}\ \phi)(r\ \text{sin}\ \theta\ \text{cos}\ \phi)+(-r\ \text{sin}\ \theta)(0)\\
=0
##

2

## ({\nabla f })^{r}=g_{rr}=:=g_{11}=\big\langle\frac{\partial}{\partial r}\ ,\ \frac{\partial}{\partial r}\big\rangle\\
= \big\langle\frac{\partial x}{\partial r}\frac{\partial}{\partial x}+\frac{\partial y}{\partial r}\frac{\partial}{\partial y}+\frac{\partial z}{\partial r}\frac{\partial}{\partial z}\ ,\ \frac{\partial x}{\partial r}\frac{\partial}{\partial x}+\frac{\partial y}{\partial r}\frac{\partial}{\partial y}+\frac{\partial z}{\partial r}\frac{\partial}{\partial z}\big\rangle\\
= \frac{\partial x}{\partial r}\frac{\partial x}{\partial r}+\frac{\partial y}{\partial r}\frac{\partial y}{\partial r}+\frac{\partial z}{\partial r}\frac{\partial z}{\partial r}\\
=(\text{sin}\ \theta\ \text{cos}\ \phi)^{2}+(\text{sin}\ \theta\ \text{sin}\ \phi)^{2}+(\text{cos}\ \theta)^{2}\\
=1
##
## ({\nabla f })^{\theta}=g_{\theta\theta}=:=g_{22}=\big\langle\frac{\partial}{\partial \theta}\ ,\ \frac{\partial}{\partial \theta}\big\rangle\\
= \big\langle\frac{\partial x}{\partial \theta}\frac{\partial}{\partial x}+\frac{\partial y}{\partial \theta}\frac{\partial}{\partial y}+\frac{\partial z}{\partial \theta}\frac{\partial}{\partial z}\ ,\ \frac{\partial x}{\partial \theta}\frac{\partial}{\partial x}+\frac{\partial y}{\partial \theta}\frac{\partial}{\partial y}+\frac{\partial z}{\partial \theta}\frac{\partial}{\partial z}\big\rangle\\
= \frac{\partial x}{\partial \theta}\frac{\partial x}{\partial \theta}+\frac{\partial y}{\partial \theta}\frac{\partial y}{\partial \theta}+\frac{\partial z}{\partial \theta}\frac{\partial z}{\partial \theta}\\
=(r\ \text{cos}\ \theta\ \text{cos}\ \phi)^{2}+(r\ \text{cos}\ \theta\ \text{sin}\ \phi)^{2}+(-r\ \text{sin}\ \theta)^{2}\\
=r^{2}
##
## ({\nabla f })^{\phi}=g_{\phi\phi}=:=g_{22}=\big\langle\frac{\partial}{\partial \phi}\ ,\ \frac{\partial}{\partial \phi}\big\rangle\\
= \big\langle\frac{\partial x}{\partial \phi}\frac{\partial}{\partial x}+\frac{\partial y}{\partial \phi}\frac{\partial}{\partial y}+\frac{\partial z}{\partial \phi}\frac{\partial}{\partial z}\ ,\ \frac{\partial x}{\partial \phi}\frac{\partial}{\partial x}+\frac{\partial y}{\partial \phi}\frac{\partial}{\partial y}+\frac{\partial z}{\partial \phi}\frac{\partial}{\partial z}\big\rangle\\
= \frac{\partial x}{\partial \phi}\frac{\partial x}{\partial \phi}+\frac{\partial y}{\partial \phi}\frac{\partial y}{\partial \phi}+\frac{\partial z}{\partial \phi}\frac{\partial z}{\partial \phi}\\
=(-r\ \text{sin}\ \theta\ \text{sin}\ \phi)^{2}+(r\ \text{sin}\ \theta\ \text{cos}\ \phi)^{2}+(0)^{2}\\
=r^{2}\text{sin}^{2}\theta
##

Are they correct?
 
What is ##f##? Also, normally, the gradient is a covariant vector. Your notation is therefore not very clear to me.
 
I mention the definition below:

If ##M^{n}## is a (psuedo)-Riemannian manifold and ##f## is a differentiable function, the gradient vector ##\nabla f## is the contravariant vector associated to the covector ##df## such that ##df({\bf{w}})=\langle\nabla f, {\bf{w}}\rangle## for some vector ##\bf{w}##.

Now, ##\displaystyle{df = \frac{\partial f}{\partial x^{j}}dx^{j}}## and ##\nabla f## is the contravariant vector associated to the covector ##df## so that ##\displaystyle{(\nabla f)^{i} = g^{ij}\frac{\partial f}{\partial x^{j}}}##.
 
You still have not defined what ##f## is. Based on your problem statement, it is not necessarily the coordinate functions
 
Thanks for pointing that out. I now understand my mistake in my proposed solution.

I think the function ##f## has to be kept untouched. Using the definition ##\displaystyle{(\nabla f)^{i} = g^{ij}\frac{\partial f}{\partial x^{j}}}##,

## ({\nabla f})^{r}=g^{rr}\frac{\partial f}{\partial r}=(g_{rr})^{-1}\frac{\partial f}{\partial r}=\big\langle\frac{\partial}{\partial r}\ ,\ \frac{\partial}{\partial r}\big\rangle ^{-1}\frac{\partial f}{\partial r}\\
= \big\langle\frac{\partial x}{\partial r}\frac{\partial}{\partial x}+\frac{\partial y}{\partial r}\frac{\partial}{\partial y}+\frac{\partial z}{\partial r}\frac{\partial}{\partial z}\ ,\ \frac{\partial x}{\partial r}\frac{\partial}{\partial x}+\frac{\partial y}{\partial r}\frac{\partial}{\partial y}+\frac{\partial z}{\partial r}\frac{\partial}{\partial z}\big\rangle ^{-1}\frac{\partial f}{\partial r}\\
= (\frac{\partial x}{\partial r}\frac{\partial x}{\partial r}+\frac{\partial y}{\partial r}\frac{\partial y}{\partial r}+\frac{\partial z}{\partial r}\frac{\partial z}{\partial r}) ^{-1}\frac{\partial f}{\partial r}\\
=[(\text{sin}\ \theta\ \text{cos}\ \phi)^{2}+(\text{sin}\ \theta\ \text{sin}\ \phi)^{2}+(\text{cos}\ \theta)^{2}] ^{-1}\frac{\partial f}{\partial r}\\
=\frac{\partial f}{\partial r}
##

## ({\nabla f })^{\theta}=g^{\theta\theta}=(g_{\theta\theta}) ^{-1}\frac{\partial f}{\partial \theta}=\big\langle\frac{\partial}{\partial \theta}\ ,\ \frac{\partial}{\partial \theta}\big\rangle ^{-1}\frac{\partial f}{\partial \theta}\\
= \big\langle\frac{\partial x}{\partial \theta}\frac{\partial}{\partial x}+\frac{\partial y}{\partial \theta}\frac{\partial}{\partial y}+\frac{\partial z}{\partial \theta}\frac{\partial}{\partial z}\ ,\ \frac{\partial x}{\partial \theta}\frac{\partial}{\partial x}+\frac{\partial y}{\partial \theta}\frac{\partial}{\partial y}+\frac{\partial z}{\partial \theta}\frac{\partial}{\partial z}\big\rangle ^{-1}\frac{\partial f}{\partial \theta}\\
= (\frac{\partial x}{\partial \theta}\frac{\partial x}{\partial \theta}+\frac{\partial y}{\partial \theta}\frac{\partial y}{\partial \theta}+\frac{\partial z}{\partial \theta}\frac{\partial z}{\partial \theta}) ^{-1}\frac{\partial f}{\partial \theta}\\
=[(r\ \text{cos}\ \theta\ \text{cos}\ \phi)^{2}+(r\ \text{cos}\ \theta\ \text{sin}\ \phi)^{2}+(-r\ \text{sin}\ \theta)^{2}] ^{-1}\frac{\partial f}{\partial \theta}\\
=\frac{1}{r^{2}}\frac{\partial f}{\partial \theta}
##
## ({\nabla f })^{\phi}=g^{\phi\phi}=(g_{\phi\phi}) ^{-1}\frac{\partial f}{\partial\phi}=\big\langle\frac{\partial}{\partial \phi}\ ,\ \frac{\partial}{\partial \phi}\big\rangle ^{-1}\frac{\partial f}{\partial\phi}\\
= \big\langle\frac{\partial x}{\partial \phi}\frac{\partial}{\partial x}+\frac{\partial y}{\partial \phi}\frac{\partial}{\partial y}+\frac{\partial z}{\partial \phi}\frac{\partial}{\partial z}\ ,\ \frac{\partial x}{\partial \phi}\frac{\partial}{\partial x}+\frac{\partial y}{\partial \phi}\frac{\partial}{\partial y}+\frac{\partial z}{\partial \phi}\frac{\partial}{\partial z}\big\rangle ^{-1}\frac{\partial f}{\partial\phi}\\
= (\frac{\partial x}{\partial \phi}\frac{\partial x}{\partial \phi}+\frac{\partial y}{\partial \phi}\frac{\partial y}{\partial \phi}+\frac{\partial z}{\partial \phi}\frac{\partial z}{\partial \phi}) ^{-1}\frac{\partial f}{\partial\phi}\\
=[(-r\ \text{sin}\ \theta\ \text{sin}\ \phi)^{2}+(r\ \text{sin}\ \theta\ \text{cos}\ \phi)^{2}+(0)^{2}] ^{-1}\frac{\partial f}{\partial\phi}\\
=\frac{1}{r^{2}\text{sin}^{2}\theta}\frac{\partial f}{\partial\phi}##
 
Note that it is not always true that ##g^{ij} = (g_{ij})^{-1}##. This is only true if ##\partial_r## is orthogonal to the other basis vectors. However, this is the case here.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
1K
Replies
33
Views
4K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
2
Views
1K
Replies
10
Views
3K