- #1

- 29

- 1

From the equation: [itex]m\lambda = 2Lcos\theta[/itex], where [itex]m[/itex] is the number of fringes, if we consider just one fringe at a fixed wavelength, [itex]m\lambda[/itex] is constant and hence [itex]2Lcos\theta[/itex] is also constant.

Hence reducing [itex]L[/itex] causes [itex]cos\theta[/itex] to increase, which is analogous to reducing [itex]\theta[/itex]. [Is this where I'm going wrong?]

Question 1: When reducing

*d*in the image above, does it matter if we are moving [itex]L_1[/itex] towards [itex]L_2[/itex] or vice versa? (Is it directionally dependent?)

Question 2: The image suggests that [itex]\theta[/itex] is only linked to [itex]L_1[/itex]. If I move [itex]L_1[/itex] towards [itex]L_2[/itex], the adjacent side of the right-angled triangle is getting shorter, and hence [itex]\theta[/itex] must be increasing. But this goes against what happens when it is considered mathematically.

How can we tell PHYSICALLY whether the rings are contracting or expanding? Thank you.