Challenge Math Challenge - January 2020

Click For Summary
The Math Challenge from January 2020 features a series of solved problems primarily focused on inequalities, integrals, and group homomorphisms. Key discussions include proving inequalities involving smooth periodic functions, establishing bounds for products of convex functions, and exploring properties of differential operators. Additionally, participants tackled problems related to sequences, specifically the Pell sequence, and analyzed unique solutions to recurrence relations. The forum highlights a collaborative environment where users correct and refine each other's mathematical reasoning. Overall, the thread showcases a rich exchange of mathematical ideas and solutions.
  • #61
The solution to this inequality draws inspiration from this integral:
$$\int \frac{dx}{1+k^2x^2} = \frac{1}{k}\arctan(kx) + C$$
We assume that the sequences on the right-hand side are well defined. Then we won't have any convergence problems.
We proceed using Cauchy-Schwarz inequality:
$$\left(\sum_{n \in \mathbb{N}}a_n\right)^2 \leq \sum_{n \in \mathbb{N}} a^2_n(1+k^2n^2)\sum_{n \in \mathbb{N}} \frac{1}{1+k^2n^2} $$.
Here ##k \in \mathbb{R}## is just a parameter, setting it up for the integral above.
The second sum can be bounded by the integral:
$$\sum_{n \in \mathbb{N}} \frac{1}{1+k^2n^2} < \int_0^\infty \frac{dx}{1+k^2x^2} = \frac{\pi}{2k}$$.
Combining the inequalities, we have:
$$\left(\sum_{n \in \mathbb{N}}a_n\right)^2 < \sum_{n \in \mathbb{N}} a^2_n(1+k^2n^2)\frac{\pi}{2k} = \frac{\pi}{2} \left(\frac{1}{k}\sum_{n \in \mathbb{N}} a^2_n + k \sum_{n \in \mathbb{N}} n^2a^2_n\right)$$
The term on the right is of the form ##\tfrac{x}{k} + yk##, and we need it to be of the form ##2\sqrt{xy}## in order to prove the inequality. So we will assume that it's of this form, and search for ##k## to confirm it, if possible. We find:
$$\frac{x}{k} + yk = 2\sqrt{xy} \Rightarrow \frac{x^2}{k^2} - 2xy + y^2k^2 = 0 \Rightarrow \left(\frac{x}{k} - yk\right) = 0 \Rightarrow k = \sqrt{\frac{x}{y}}$$.
So with choice:
$$k = \sqrt{\frac{\sum_{n \in \mathbb{N}} a^2_n}{\sum_{n \in \mathbb{N}} n^2a^2_n}}$$
we obtain the inequality that we're looking for by squaring both sides.
 
  • Like
Likes Infrared and fresh_42
Physics news on Phys.org
  • #62
Antarres said:
The solution to this inequality draws inspiration from this integral:
$$\int \frac{dx}{1+k^2x^2} = \frac{1}{k}\arctan(kx) + C$$
We assume that the sequences on the right-hand side are well defined. Then we won't have any convergence problems.
We proceed using Cauchy-Schwarz inequality:
$$\left(\sum_{n \in \mathbb{N}}a_n\right)^2 \leq \sum_{n \in \mathbb{N}} a^2_n(1+k^2n^2)\sum_{n \in \mathbb{N}} \frac{1}{1+k^2n^2} $$.
Here ##k \in \mathbb{R}## is just a parameter, setting it up for the integral above.
The second sum can be bounded by the integral:
$$\sum_{n \in \mathbb{N}} \frac{1}{1+k^2n^2} < \int_0^\infty \frac{dx}{1+k^2x^2} = \frac{\pi}{2k}$$.
Combining the inequalities, we have:
$$\left(\sum_{n \in \mathbb{N}}a_n\right)^2 < \sum_{n \in \mathbb{N}} a^2_n(1+k^2n^2)\frac{\pi}{2k} = \frac{\pi}{2} \left(\frac{1}{k}\sum_{n \in \mathbb{N}} a^2_n + k \sum_{n \in \mathbb{N}} n^2a^2_n\right)$$
The term on the right is of the form ##\tfrac{x}{k} + yk##, and we need it to be of the form ##2\sqrt{xy}## in order to prove the inequality. So we will assume that it's of this form, and search for ##k## to confirm it, if possible. We find:
$$\frac{x}{k} + yk = 2\sqrt{xy} \Rightarrow \frac{x^2}{k^2} - 2xy + y^2k^2 = 0 \Rightarrow \left(\frac{x}{k} - yk\right) = 0 \Rightarrow k = \sqrt{\frac{x}{y}}$$.
So with choice:
$$k = \sqrt{\frac{\sum_{n \in \mathbb{N}} a^2_n}{\sum_{n \in \mathbb{N}} n^2a^2_n}}$$
we obtain the inequality that we're looking for by squaring both sides.
The inequality is called Carlson's inequality. Hardy gave two proofs, one with the integration trick and Schwarz's inequality as above, and another which uses Parseval's inequality (see November 2019 challenge #1).

So if anyone wants to search for the second proof, go ahead!
 
  • #63
etotheipi said:
Suppose the first number is ##n## and the final number is ##m##. We then require that $$\sum_{i=n}^{m} i = \frac{m(m+1)}{2} - \frac{n(n-1)}{2} = 2020$$ By multiplying through by 2 and expanding the brackets, we get $$(m^{2} - n^{2}) + (m+n) = 4040 \implies (m+n)(m-n+1) = 4040$$ Since both ##(m+n)## and ##(m-n+1)## are integers, they must be factor pairs of 4040. Note also that for ##n>0##, ##(m+n) > (m-n+1)##.

The possible pairs ##(m+n, m-n+1)## are then ##(4040,1), (2020, 2), (1010, 4), (808, 5), (505, 8), (404, 10), (202, 20), (101, 40)##.

Furthermore, the sum ##(m+n) + (m-n+1) = 2m+1## is odd, so we also want only the factor pairs which sum to an odd number. We are then left with the pairs ##(4040,1), (808, 5), (505, 8), (101, 40)##, each of which could then be solved simultaneously to find the endpoints.

So we have 4 ways, if we also include the boring one which only contains 2020!

I am going to show my ignorance here and ask, where can I learn more about this type of problem solving? I'm exploring math and wouldn't even know what category to fit this type of problem into, much less how to solve it! Can anyone give me a direction to go into and thanks in advance.

Sean
 
  • Like
Likes Not anonymous
  • #64
Hsopitalist said:
I am going to show my ignorance here and ask, where can I learn more about this type of problem solving? I'm exploring math and wouldn't even know what category to fit this type of problem into, much less how to solve it! Can anyone give me a direction to go into and thanks in advance.

Sean

Looks like elementary number theory to me. Or discrete maths.
 
  • Like
Likes Hsopitalist and etotheipi
  • #65
Hsopitalist said:
I am going to show my ignorance here and ask, where can I learn more about this type of problem solving? I'm exploring math and wouldn't even know what category to fit this type of problem into, much less how to solve it! Can anyone give me a direction to go into and thanks in advance.

Sean
There is basically only the idea: ##(m^{2} - n^{2}) + (m+n) = (m+n)(m-n+1)## and the formula for the sum of consecutive numbers.

It is crucial because it allows the consideration of factors of ##4040## instead of sums. However, those formulas are often found by just playing around with some algebraic expressions from the problem statement.
 
  • Like
Likes Hsopitalist and etotheipi

Similar threads

  • · Replies 114 ·
4
Replies
114
Views
11K
  • · Replies 60 ·
3
Replies
60
Views
12K
  • · Replies 86 ·
3
Replies
86
Views
13K
  • · Replies 61 ·
3
Replies
61
Views
12K
  • · Replies 67 ·
3
Replies
67
Views
11K
  • · Replies 100 ·
4
Replies
100
Views
11K
  • · Replies 33 ·
2
Replies
33
Views
9K
  • · Replies 39 ·
2
Replies
39
Views
13K
  • · Replies 61 ·
3
Replies
61
Views
10K
  • · Replies 61 ·
3
Replies
61
Views
11K