- 22,169
- 3,327
fresh_42 said:#9: \int_0^\infty \frac{x^{1916}}{x^{2016} + 1}dx
(I'm not sure if it is a valid solution since I looked up the Γ-function and its formulas ... after despaired on 2016th roots of unity and many ugly looking sheets of paper ...)
For convenience I take ##n=2016## and ##m=1916##.
The disturbing denominator can be transformed into an integral:
$$\int_0^\infty e^{(-x^n -1) y} dy = [- \frac{1}{x^n + 1} * e^{(-x^n -1) y } ]_{ y=0 }^{ y=\infty } = \frac{1}{x^n + 1}$$
Thus
$$\int_0^\infty \frac{x^{1916}}{x^{2016} + 1}dx = \int_0^\infty x^{m} \int_0^\infty e^{-x^n y} e^{-y} dy dx$$ and with Fubini's theorem
$$\int_0^\infty \frac{x^{1916}}{x^{2016} + 1}dx = \int_0^\infty\int_0^\infty x^m e^{-x^n y} e^{-y} dx dy$$.
Substitution ##z = x^n y## with ##dx = \frac{1}{ny} x^{1-n} dz## yields
$$\int_0^\infty \frac{x^{1916}}{x^{2016} + 1}dx = \frac{1}{n} \int_0^\infty e^{-y} (\frac{1}{y})^\frac{m+1}{n} dy \int_0^\infty e^{-z} z^\frac{m-n+1}{n} dz = \frac{1}{n} Γ(\frac{n-m-1}{n}) Γ(\frac{m+1}{n}) = \frac{1}{n} Γ(1-\frac{m+1}{n}) Γ(\frac{m+1}{n}) $$
$$\int_0^\infty \frac{x^{1916}}{x^{2016} + 1}dx = \frac{1}{2016} π \frac{1}{\sin{\frac{1917 π}{2016}}} ≈ 0.0101411901 $$
That is an extremely elegant solution! Congratulations! Don't worry about having looked up the ##\Gamma##-function and similar formulas, you were allowed to do that.

