I Miller indices for hexagonal crystal systems

Click For Summary
To convert a four-index Miller index, such as [1234], into a three-index format for hexagonal crystal systems, specific formulae are typically used, but their derivations are often not found in textbooks. The discussion highlights that the third index can be dropped due to the symmetry of the hexagonal structure, where the a- and b- axes form a 120-degree angle, allowing for alternative basis vectors. The redundant third index corresponds to the reciprocal space "d*" axis, while the fourth index aligns with the c-axis. A user expressed frustration with the lack of derivation resources and attempted to use vector components, which yielded unsatisfactory results. A suggestion was made to refer to the German Wikipedia for a simple derivation of these formulae.
Mind----Blown
Messages
11
Reaction score
0
Hi everyone, to find the draw the direction for a given miller index say, [1234] we first convert this miller index consisting of 4 indices into one containing 3 indices.
To do so, we have a set of formulae prescribed in almost every book. Sadly I haven't been able to come across a single book the gives the derivation of those formulae!
I thought that i could use vector-component method to get the results but that gives totally weird formulae not even close to the ones i see in my textbooks. (have a look at the attached image)

So, can anyone suggest me a textbook, a link or anything that can help me understand the derivation? I'm not finding the enthusiasm for rote-memorising the formulae if i don't know where they come from...

Thanks!
 

Attachments

  • Screenshot_2.png
    Screenshot_2.png
    10.1 KB · Views: 1,995
Physics news on Phys.org
The 4 Miller indices often used with hexagonal crystals are just a convenience. The 3rd index can be dropped. 4 indices are used to make planes with the same symmetry also "look alike" in the 4-notation.
The physical reason is that the a- and b- axes form a 120 degree angle. There is a third axis within the basal plane that has the exact same symmetry. You get this axis, let's call it "d", by rotating the b-axis by another 120 degrees. So instead of using a and be as basis vectors, you could just as well use b and d, or d and a. Absolutely nothing would change, as the 120 degree rotation is the defining feature of a hexagonal crystal.
The redundant 3rd Miller index corresponds to the reciprocal space "d*" axis. The 4th index is along the c-axis.
 
M Quack said:
The 4 Miller indices often used with hexagonal crystals are just a convenience. The 3rd index can be dropped. 4 indices are used to make planes with the same symmetry also "look alike" in the 4-notation.
The physical reason is that the a- and b- axes form a 120 degree angle. There is a third axis within the basal plane that has the exact same symmetry. You get this axis, let's call it "d", by rotating the b-axis by another 120 degrees. So instead of using a and be as basis vectors, you could just as well use b and d, or d and a. Absolutely nothing would change, as the 120 degree rotation is the defining feature of a hexagonal crystal.
The redundant 3rd Miller index corresponds to the reciprocal space "d*" axis. The 4th index is along the c-axis.
yes, i get that but still, how do we arrive at those formulae?
i tried using vectors and their components method but it doesn't work
 
From the BCS theory of superconductivity is well known that the superfluid density smoothly decreases with increasing temperature. Annihilated superfluid carriers become normal and lose their momenta on lattice atoms. So if we induce a persistent supercurrent in a ring below Tc and after that slowly increase the temperature, we must observe a decrease in the actual supercurrent, because the density of electron pairs and total supercurrent momentum decrease. However, this supercurrent...

Similar threads