MHB Min Value of $a^2+b^2$ in Quadratic Equation

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Minimum
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Determine the minimum value of $a^2+b^2$ when $(a,\,b)$ traverses all the pairs of real numbers for which the equation $x^4+ax^3+bx^2+ax+1=0$ has at least one real root.
 
Mathematics news on Phys.org
Here's my attempt at a solution.

Since \( x^{4} +ax^{3}+bx^{2}+ax+1 = 0 \), then we can assume that \( x \neq 0 \).

Dividing by \( x^{2} \) yields:
\( x^{2} + ax + \frac{a}{x} + b + \frac{1}{x^{2}} = 0 \) Rearrange terms

\( x^{2} + \frac{1}{x^{2}} + ax + \frac{a}{x} + b = 0 \) Add \( 2 \) and Subtract \( 2 \)

\( \left ( x^{2} + 2 + \frac{1}{x^{2}} \right ) + \left ( ax + \frac{a}{x} \right ) + b - 2 = 0 \) Factor each set of parentheses

\( \left ( x + \frac{1}{x} \right )^{2} + a \left ( x + \frac{1}{x} \right ) + b - 2 = 0 \)

Let \( v = x + \frac{1}{x} \), then we have \( v^{2} + av + b - 2 = 0 \).

Use the quadratic formula in attempt to solve for \( v \):
\( v = \frac{ (-a) \pm \sqrt{(-a)^{2}-4(1)(b - 2)} }{2(1)} \) Simplify

\( v = \frac{ -a \pm \sqrt{a^{2}-4b + 8} }{2} \)

Recall that \( v=x + \frac{1}{x} \), then multiplying by \( x \) yields:
\( vx = x^{2} + 1 \) Subtract \( vx \) from both sides

\( x^{2} - vx + 1 = 0 \)

In order for this to have "at least one real root", then the discriminant \( \Delta \geq 0 \):
\( (-v)^{2} - 4(1)(1) \geq 0 \) Simplify

\( v^{2} - 4 \geq 0 \) Add \( 4 \) to both sides

\( v^{2} \geq 4 \)

Since \( v = \frac{ -a \pm \sqrt{a^{2}-4b + 8} }{2} \) and \( v^{2} \geq 4 \), then:
\( \left ( \frac{ -a \pm \sqrt{a^{2}-4b + 8} }{2} \right )^{2} \geq 4 \) Simplify

\( \frac{ \left ( -a \pm \sqrt{a^{2}-4b + 8} \right )^{2} }{4} \geq 4 \) Multiply by \( 4 \)

\( \left ( -a \pm \sqrt{a^{2}-4b + 8} \right )^{2} \geq 16 \) Expand the left side

\( a^{2} \pm 2a \sqrt{a^{2}-4b + 8} + a^{2}-4b + 8 \geq 16 \) Combine like terms

\( 2a^{2} \pm 2a \sqrt{a^{2}-4b + 8} - 4b + 8 \geq 16 \) Divide both sides by \( 2 \)

\( a^{2} \pm a \sqrt{a^{2}-4b + 8} - 2b + 4 \geq 8 \) Isolate the square root term

\( \pm a \sqrt{a^{2}-4b + 8} \geq 8 - a^{2} + 2b - 4 \) Combine like terms

\( \pm a \sqrt{a^{2}-4b + 8} \geq 4 - a^{2} + 2b \) Square both sides

\( a^{2} \left ( a^{2}-4b + 8 \right ) \geq \left ( 4 - a^{2} + 2b \right )^{2} \) Expand both sides

\( a^{4} - 4a^{2}b + 8a^{2} \geq 16 - 4a^{2} + 8b - 4a^{2} + a^{4} - 2a^{2}b + 8b - 2a^{2}b
+4b^{2} \) Combine like terms

\( a^{4} - 4a^{2}b + 8a^{2} \geq 16 - 8a^{2} + 16b + a^{4} - 4a^{2}b + 4b^{2} \) Simplify/Cancel out terms

\( 8a^{2} \geq 16 - 8a^{2} + 16b + 4b^{2} \) add \( 8a^{2} \) to both sides

\( 16a^{2} \geq 16 + 16b + 4b^{2} \) Divide by \( 4 \) on both sides

\( 4a^{2} \geq 4 + 4b + b^{2} \) Add \( 4b^{2} \) to both sides and rewrite

\( 4a^{2} + 4b^{2} \geq 5b^{2} + 4b + 4 \) Factor out a \( 5 \) on the right and complete the square

\( 4a^{2} + 4b^{2} \geq 5 \left ( b^{2} + \frac{4}{5}b + \frac{4}{25} \right ) - \frac{4}{5} + 4 \) Factor and simplify

\( 4a^{2} + 4b^{2} \geq 5 \left ( b + \frac{2}{5} \right )^{2} + \frac{16}{5} \) Divide both sides by \( 4 \)

\( a^{2} + b^{2} \geq \frac{5}{4} \left ( b + \frac{2}{5} \right )^{2} + \frac{4}{5} \)

This implies that \( a^{2} + b^{2} \) has a minimum at the vertex of the parabola on the right side when \( b = - \frac{2}{5} \), so:

\( \therefore a^{2} + b^{2} = \frac{4}{5} \)
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
6
Views
2K
Replies
6
Views
2K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
2
Views
1K
Replies
19
Views
3K
Replies
4
Views
1K
Back
Top