dirk_mec1
- 755
- 13
I'm trying to find a function for x in [0, L] that minimizes this:
\int_0^{L} A \phi(x) \frac{ d \phi(x) }{dx} + B cos(\phi(x))\ d\mbox{x}
For real (given) positve numbers A and B.
with
\phi(0) = 0
\phi(x) is an increasing positve function.
Can somebody point me in the right direction?
\int_0^{L} A \phi(x) \frac{ d \phi(x) }{dx} + B cos(\phi(x))\ d\mbox{x}
For real (given) positve numbers A and B.
with
\phi(0) = 0
\phi(x) is an increasing positve function.
Can somebody point me in the right direction?
Last edited: